Curriculum Errata Notice
 2024 Level II CFA Program

UPDATED 22 APRIL 2024

This document outlines the errors submitted to CFA Institute that have been corrected.
Due to the nature of our publishing process, we may not be able to correct errors submitted after 1 September 2024 in time for the publication of the following year's print materials. However, we update all errors in the Learning Ecosystem (LES) and in this document at the end of each month.

We recommend checking either the LES or this document regularly for the most current information. Depending on when you purchase the print materials, they may or may not have the errors corrected

Table of Contents

Contents
Quantitative Methods 4
Evaluating Regression Model Fit and Interpreting Model Results. 4
Model Misspecification. 5
Extensions of Multiple Regression6
Time-Series Analysis 8
Machine Learning 9
Economics11
Currency Exchange Rates: Understanding Equilibrium Value 11
Economic Growth 12
Financial Statement Analysis 13
Intercorporate Investments 13
Employee Compensation: Post-Employment and Share-Based 14
Financial Statement Modeling 16
Corporate Issuers 16
Cost of Capital: Advanced Topics 16
Corporate Restructuring 16
Equity Valuation.17
Free Cash Flow Valuation 17
Market-Based Valuation: Price and Enterprise Value Multiples. 18
Residual Income Valuation. 22
Private Company Valuation. 23
Fixed Income 24
The Term Structure and Interest Rate Dynamics 24
The Arbitrage-Free Valuation Framework 26
Valuation and Analysis of Bonds with Embedded Options. 27
Credit Analysis Model. 28

CFA Institute

2024 LEVEL II

Alternative Investments ...29.
Introduction to Commodities and Commodity Derivatives... $29 .$.

Guidance for Standards I-VII.. 30

Quantitative Methods

Basics of Multiple Regression and

Underlying Assumptions

Lesson	Location	PDF Pg	Revised	Correction	
Basics of	Knowledge	9	29 Jan	Replace:	With:
Multiple	Check		2024	If the market excess return, SMB, and HML are each zero, then we expect a return on the portfolio of 1.534\%.	If the market excess return, SMB, and HML are each zero, then Regression
Solution 1			we expect a return on the portfolio of 1.5324\%.		

Evaluating Regression Model Fit and Interpreting Model Results

Lesson	Location	PDF Pg	Revised	Correction	
Goodness of Fit	Exhibit 1	28	$\begin{gathered} 29 \text { Jan } \\ 2024 \end{gathered}$	Replace cell in column "Coefficient" and row "Intercept": 2.1876	With: -2.1876
Goodness of Fit	Knowledge Check, Solution	31	$\begin{aligned} & 29 \text { Jan } \\ & 2024 \end{aligned}$	Replace: The lower adjusted R^{2} is consistent with the $\mid t$-statistic\| for ADV's coefficient <1.0 (i.e., 0.3302) and the coefficient not being different from zero at typical significance levels (P -value $=$ 0.7429).	With: The lower adjusted R^{2} is consistent with the $\mid t$-statistic\| for ADV's coefficient <1.0 (i.e., $\mathbf{0 . 3 3 2 0}$) and the coefficient not being different from zero at typical significance levels (P -value $=$ 0.7429).

| Lesson | Location | PDF Pg | Revised | Correction | |
| :--- | :--- | :---: | :---: | :--- | :--- | :--- |
| Testing Joint | Equation | 34 | 29 Jan | Replace: | |
| Hypotheses for
 with | | 2024 | $H_{0}: b_{j} \geq B_{j}, H_{a}: b_{j}>B_{j}$ | $H_{0}: b_{j} \leq B_{j}, H_{a}: b_{j}>B_{j}$ | |
| Coefficients | heading: | | | | |
| | One-sided
 coefficient
 test, right
 side | | | | |

Quantitative Methods

Model Misspecification

Lesson	Location	PDF Pg	Revised	Correctio									
Violations of Regression Assumptions: Multicollinearity	Practice Problems Exhibit 2	72	$\begin{gathered} 22 \text { March } \\ 2024 \end{gathered}$	Replace: Model B	Durbin-Watson	5.088	4.387	No	With: Model B	Durbin-Watson	3.088	2.387	No

Quantitative Methods

Extensions of Multiple Regression

Lesson	Location	$\begin{gathered} \text { PDF } \\ \text { Pg } \end{gathered}$	Revised	Correction	
Dummy Variables in a Multiple Linear Regression	Equation 3	87	$\begin{gathered} 29 \mathrm{Jan} \\ 2024 \end{gathered}$	Replace: $Y_{i}=b_{0}+d_{0} D b_{i}+b_{1} X_{i}+\varepsilon_{i} .$	With: $Y_{i}=b_{0}+d_{0} D b_{i}+b_{1} X_{i}+\varepsilon_{i} .$
Dummy Variables in a Multiple Linear Regression	Equation 5	89	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: $Y_{i}-b_{0}+d_{0} D_{1}+b_{1} X_{i}+d_{1} D_{i} X_{i}+\varepsilon_{i}$	With: $\boldsymbol{Y}_{i}=b_{0}+d_{0} D_{1}+b_{1} X_{i}+d_{1} D_{i} X_{i}+\varepsilon_{i}$
Dummy Variables in a Multiple Linear Regression	Question Set, Question 3	93	$\begin{gathered} 29 \mathrm{Jan} \\ 2024 \end{gathered}$	Replace Option A: The average return for a regulated firm is 0.5% lower than for a non-regulated firm, holding the market share constant. Replace Option C: For each increase in market share, a regulated firm has a 0.3 lower return on assets than a non-regulated firm.	With: The average return for a regulated firm is at least $\mathbf{0 . 5 \%}$ lower than for a non-regulated firm, holding the market share constant. With: For each increase in market share, a regulated firm will have an increasingly lower ROA than an unregulated firm.

Lesson	Location	$\begin{gathered} \text { PDF } \\ \text { Pg } \end{gathered}$	Revised	Correction	
Dummy Variables in a Multiple Linear Regression	Question Set, Solution to 3	93	$\begin{gathered} 29 \\ \text { Jan } 2024 \end{gathered}$	Replace: A is correct because the coefficient on REG is -0.5 . C is correct because the sum of coefficients is $-0.3=-0.5$ REG + 0.4MKTSH -0.2REG_MKTSH).	With: A is correct because the coefficient on REG is -0.5. As MKTSH approaches 0 , we see that the regulated firm has 0.5% less return. Or, if the Market Share Contribution to return is the same, that is, $0.2 * \mathrm{MKTSH}$ (Regulated) $=0.4^{*} \mathrm{MKTSH}$ (Nonregulated), then the regulated firm has 0.5% less return. C is correct because the sum of coefficients is $-0.3=-0.5$ REG + $0.4 \mathrm{MKTSH}-0.2$ REG_MKTSH). If MKTSH increases by $\mathbf{1 \%}$, for both regulated and non-regulated, the regulated firm will have a return that is 0.2% less, $0.2(1 \%)-0.4(1 \%)=-0.2 \%$. The 0.5% return of the non-regulated does not get included, since we are looking at the change in the return, based on a 1% increase in MKTSH.
Multiple Linear Regression with Qualitative Dependent Variables	Knowledge Check, Solution 2	99	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: Therefore, the marginal impact of increasing the NPM variable by 1%, rounded to two decimal places, is a decrease in the probability of a share buyback of $29.00 \%-29.06 \%=-0.07 \%$; differently put, it increases the probability of a share buyback.	With: Therefore, the marginal impact of increasing the DE variable by 1%, rounded to two decimal places, is a decrease in the probability of a share buyback of $29.00 \%-29.06 \%=-0.07 \%$; differently put, it decreases the probability of a share buyback.
Multiple Linear Regression with Qualitative Dependent Variables	Practice Problem 9	109	22 March 2024	Replace: $P=\frac{1}{1+\exp \left\{-\left[\begin{array}{l} -2.0350+(-0.7667)(0.2911)+(-0.0089)(92.9093)+ \\ (-0.1113)(2.3068)+(0.0292)(15.1743)+(0.0390)(2.0711)+ \\ (0.3432)(1.6060)+(-0.0502)(7.6489) \end{array}\right]\right\}}$	With $P=\frac{1}{1+\exp \left\{-\left[\begin{array}{l} -2.0350+(-0.7667)(0.2911)+(-0.0089)(92.9093)+ \\ ((0.1113)(2.3068)+(0.0292)(15.1743)+(-0.0390)(2.0711)+ \\ (0.3432)(1.6060)+(-0.0502)(7.6489) \end{array}\right]\right\}}$
Multiple Linear Regression with Qualitative Dependent Variables	Solution 13	110	22 March 2024	Replace: Probability of being a winning fund $=0.3595=\frac{1}{1+\exp [-(-1.9589)+(0.3453)(4.0)]}$.	With: Probability of being a wimning fund $=0.3595=\frac{1}{1+\exp [-(-1.9589)+(0.3453)(4.0) 11]}$

Quantitative Methods
 Time-Series Analysis

Lesson	Location	PDF Pg	Revised	Correction	
Trend Models and Testing for Correlated Errors	Second paragraph	124	$\begin{gathered} 29 \\ \text { Jan } 2024 \end{gathered}$	Replace: Because the value of the Durbin-Watson statistic (1.09) is below this critical value, we can reject the hypothesis of no positive serial correlation in the errors.	With: Because the value of the Durbin-Watson statistic (1.2145) is below this critical value, we can reject the hypothesis of no positive serial correlation in the errors.
Mean Reversion and Multiperiod Forecasts	Exhibit 13	131	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: Coefficient Standard Error t-Statistic Intercept 1.3346 0.2134 6.2540	With:
Seasonality in Time-Series Models	Exhibit 27	154	$\begin{gathered} 22 \text { March } \\ 2024 \end{gathered}$	Replace: If sales grew by 1% last quarter and by 2% four quarters ago, then the model would predict that sales growth this quarter will be $0.0107-0.0154(0.01)+0.7549(0.02)=0.0256$, or 2.56%.	With: If sales grew by 1% last quarter and by 2% four quarters ago, then the model would predict that sales growth this quarter will be $0.0107-\mathbf{0 . 1 5 4 0}(\mathbf{0 . 0 1})+0.7549(0.02)=\mathbf{0 . 0 2 4 3}$, or $\mathbf{2 . 4 3 \%}$.
Other Issues in Time Series	Solution 10	191	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: To see whether this result is significantly less than 2.0, refer to the Durbin-Watson table in Appendix E at the end of this volume, in the column marked $k=1$ (one independent variable) and the row corresponding to 80 observations. We see that $d l=1.61$.	With: To see whether this result is significantly less than 2.0, refer to the Durbin-Watson table in Appendix E at the end of this volume, in the column marked $k=1$ (one independent variable) and the row corresponding to 80 observations. We see that $d l=1.55$.

Quantitative Methods
 Machine Learning

Lesson	Location	PDF Pg	Revised	Correction	
Hierarchical Clustering	LOS	241	$\begin{gathered} 29 \mathrm{Jan} \\ 2024 \end{gathered}$	Replace: describe neural networks, deep learning nets, and reinforcement learning	With: describe unsupervised machine learning algorithms-including principal components analysis, k-means clustering, and hierarchical clustering-and determine the problems for which they are best suited
Case Study: Clustering Stocks Based on Co- Movement Similarity	LOS	245	$\begin{gathered} 29 \mathrm{Jan} \\ 2024 \end{gathered}$	Replace: describe neural networks, deep learning nets, and reinforcement learning	With: describe unsupervised machine learning algorithms-including principal components analysis, k-means clustering, and hierarchical clustering-and determine the problems for which they are best suited
Deep Neural Networks	LOS	254	$\begin{gathered} 29 \text { Jan } \\ 2024 \end{gathered}$	Add as the LOS statement: describe neural networks, deep learning nets, and reinforcement learning	
Case Study: Deep Neural NetworkBased Equity Factor Model	LOS	256	$\begin{aligned} & 29 \text { Jan } \\ & 2024 \end{aligned}$	Add as the LOS statement: describe neural networks, deep learning nets, and reinforcement learning	
Choosing an Appropriate ML Algorithm	LOS	265	$\begin{gathered} 29 \text { Jan } \\ 2024 \end{gathered}$	Add as the LOS statement: describe supervised machine learning algorithms-including penalized regression, support vector machine, k-nearest neighbor, classification and regression tree, ensemble learning, and random forest-and determine the problems for which they are best suited" and "describe unsupervised machine learning algorithms-including principal components analysis, k-means clustering, and hierarchical clustering-and determine the problems for which they are best suited	

Lesson	Location	PDF Pg	Revised	Correction	
$\begin{array}{l}\text { Practice } \\ \text { Problems }\end{array}$	$\begin{array}{l}\text { Problem 6, } \\ \text { Option C }\end{array}$	273	29 Jan		
2024					

Statements 1, 3 and 3.\end{array}\right]\)| With: |
| :--- |
| Statements 1, 2, and 3. |

Economics

Currency Exchange Rates: Understanding Equilibrium Value

Lesson	Location	PDF Pg	Revised	Correction	
Purchasing Power Parity	Second sentence at top of page	407	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: Each chart plots the inflation differential (horizontal axis) against the percentage change in the exchange rate (vertical axis).	With: Each chart plots the inflation differential (vertical axis) against the percentage change in the exchange rate (horizontal axis).
Purchasing Power Parity	Last paragraph of the page	407	$\begin{gathered} 22 \text { March } \\ 2024 \end{gathered}$	Replace: Note that the Brazilian Real-USD exchange rate changes rapidly in the period 1990-1993, mirroring the very large differences in relative inflation between hyperinflationary Brazil and low inflation rate United States.	With: Note that the Brazilian Real-USD exchange rate changes rapidly in the period 1980-1993, mirroring the very large differences in relative inflation between hyperinflationary Brazil and low inflation rate United States.
Purchasing Power Parity	Exhibit 3 Title	408	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace axis headings: DEM/USD and US less German Real Interest Rates	With: REAL/USD and Differences in Inflation Rates
Monetary and Fiscal Policies	Second paragraph	425	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: With floating exchange rates and high capital mobility, a domestic currency will appreciate given a restrictive domestic monetary policy and/or an expansionary fiscal policy. Similarly, a domestic currency will depreciate given an expansionary domestic monetary policy and/or a restrictive fiscal policy. In Exhibit 4, we show that the combination of a restrictive monetary policy and an expansionary fiscal policy is extremely bullish for a currency when capital mobility is high; likewise, the combination of an expansionary monetary policy and a restrictive fiscal policy is bearish for a currency.	With: With floating exchange rates and high capital mobility, a domestic currency will appreciate given a restrictive domestic monetary policy and/or an expansionary fiscal policy that results in higher real interest rates. Similarly, a domestic currency will depreciate given an expansionary domestic monetary policy and/or a restrictive fiscal policy that results in lower real interest rates. In Exhibit 4, we show that the combination of a restrictive monetary policy and an expansionary fiscal policy (high real rates) is extremely bullish for a currency when capital mobility is high; likewise, the combination of an expansionary monetary policy and a restrictive fiscal policy (lower real rates) is bearish for a currency.

Lesson	Location	PDF Pg	Revised	Correction					
Monetary and Fiscal Policies	Exhibit 5	426	$\begin{gathered} 29 \mathrm{Jan} \\ 2024 \end{gathered}$	Replace:	Expansionary Monetary Policy Policy	Restrictive Monetary Policy	With:	Expansionary Monetary Policy	Restrictive Monetary Policy
				Expansionary Fiscal Policy	Indeterminate	Domestic currency appreciates	Expansionary Fiscal Policy	Domestic currency depreciates	Indeterminate
				Restrictive Fiscal Policy	Domestic currency depreciates	Indeterminate	Restrictive Fiscal Policy	Indeterminate	Domestic currency appreciates

Economics

Economic Growth

| Lesson | Location | PDF Pg | Revised | Correction | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| Factors
 Favoring and
 Limiting | Example 1 | 466 | 29 Jan | Replace: | | | |
| Economic
 Growth | | | 2024 | Singapore | $\left[(\$ 66,189 / \$ 4,299)^{1 / 68}\right]-1=4.6 \%$ | With: | |

Financial Statement Analysis

ntercorporate Investments

Lesson	Location	PDF Pg	Revised	Correction	
Amortization of Excess Purchase Price, Fair Value Option, and Impairment	$2^{\text {nd }}$ to last paragraph	19	29 Jan 2024	Replace: Both IFRS and US GAAP prohibit the reversal of impairment losses even if the fair value later increases.	With: Both IFRS and US GAAP prohibit the reversal of impairment losses even if the fair valuelater increases.
Practice Problems	Question 17 and Solution	51, 59		Remove the following Question 17: Compared to accounting principles currently in use, the pooling method BetterCare used for its Statewide Medical acquisition has most likely caused its reported: A. revenue to be higher. B. total equity to be lower. C. total assets to be higher. Remove the following Solution to 17: B is correct. Statewide Medical was accounted for under the pooling of interest method, which causes all of Statewide's assets and liabilities to be reported at historical book value. The excess of assets over liabilities generally is lower using the historical book value method than using the fair value method (this latter method must be used under currently required acquisition accounting). It would have no effect on revenue.	

Financial Statement Analysis

Employee Compensation: Post-Employment and Share-Based

Lesson	Location	PDF Pg	Revised	Correction	
Financial Reporting for Post- Employment Benefits	Example 10 Question 2	95	$\begin{aligned} & 29 \text { Jan } \\ & 2024 \end{aligned}$	Replace: - Benefit obligation at the beginning of the year of 97 - Fair value of plan assets at the beginning of the year of 1,010	With: - Benefit obligation at the beginning of the year of JPY 97 million - Fair value of plan assets at the beginning of the year of JPY 1,010 million
Financial Modeling and Valuation Considerations for Post- Employment Benefits	Practice Problem 9	104	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace choice A: 9. If XYZ prepared its financial statements under US GAAP, the total amount recognized by XYZ on the income statement related to its DB plan for fiscal year 2024 (assuming the company chooses not to immediately recognize the actuarial loss and assuming there is no amortization of past service costs or actuarial gains and losses) would be closest to: A. 28.	Replace choice A: 9. If XYZ prepared its financial statements under US GAAP, the total amount recognized by XYZ on the income statement related to its DB plan for fiscal year 2024 (assuming the company chooses not to immediately recognize the actuarial loss and assuming there is no amortization of past service costs or actuarial gains and losses) would be closest to: A. 20.
Financial Modeling and Valuation Considerations for Post- Employment Benefits	Solution 9	111	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: A is correct. Under US GAAP-assuming the company chooses not to immediately recognize the actuarial loss and assuming there is no amortization of past service costs or actuarial gains and losses-the components of periodic pension cost that would be reported in P\&L include the current service cost of 200, the interest expense on the pension obligation at the beginning of the period of $2,940[=7.0 \% \times(42,000+120)]$, and the expected return on plan assets, which is a reduction of the cost of 3,120 (= $8.0 \% \times 39,000)$. Summing these three components gives 28 .	With: A is correct. Under US GAAP-assuming the company chooses not to immediately recognize the actuarial loss and assuming there is no amortization of past service costs or actuarial gains and losses-the components of periodic pension cost that would be reported in P\& L include the current service cost of 200, the interest expense on the pension obligation at the beginning of the period of 2,940 [$=7.0 \% \times 42,000]$, and the expected return on plan assets, which is a reduction of the cost of $3,120(=8.0 \% \times 39,000)$. Summing these three components gives 20.

Financial Statement Analysis

Einancial Statement Modeling

Lesson	Location	PDF Pg	Revised	Correction		
Modeling	Example 5	426	22 March	Replace:	With:	
Operating Costs:	Solution 2		2024	The projected beauty EBIT is EUR2,689 million, while the projected mass market EBIT is EUR5,937 million, assuming mass	The projected beauty EBIT is EUR2,689 million, while the projected mass market EBIT is EUR 3,249 million, assuming mass Cos Goods	
Sold and SG\&A				market sales of EUR14,937 million, gross margin of 60.75%, A\&P \% of 15.4\%, and SG\&A/Other \% of 23.6\%.	market sales of EUR14,937 million, gross margin of 60.75%, A\&P \% of 15.4\%, and SG\&A/Other \% of 23.6\%.	

Corporate Issuers
Cost of Capital: Advanced Topics

Lesson	Location	PDF Pg	Revised	Correction
Mini-Case 2	Question and Answers	150	22 March 2024	Missing question and answer content can be found here: Link to PDF

Corporate Restructuring

Lesson	Location	PDF Pg	Revised	Correction							
Corporate Evolution, Actions, and Motivations	Exhibit 1 table headers	158	$\begin{gathered} 22 \text { March } \\ 2024 \end{gathered}$	Replace: Stage in Life Cycle \| Start-Up	Start-Up	Maturity	Decline	With: Stage in Life Cycle \| Start-Up	Growth	Maturity	Decline

Lesson	Location	PDF Pg	Revised	Correction	
Evaluating Investment Actions	Example 11 Solution 3	198	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: Hapalla AG's offer of BRL45 billion to acquire a 25% interest in OHAA values OHAA at BRL180 billion (45/0.25) on an enterprise value basis, or BRL147,359 million in equity value after subtracting cash and cash equivalents at year-end 20X7.	With: Hapalla AG's offer of BRL45 billion to acquire a 25% interest in OHAA values OHAA at BRL180 billion (45/0.25) on an enterprise value basis, or BRL147,539 million in equity value after subtracting cash and cash equivalents at year-end 20X7.
Evaluating Investment Actions	Exhibit 31 table	198	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: Gain on sale $\quad 0 \quad$ _	With: $\begin{array}{llll}\text { Gain on sale } & 0 & \mathbf{3 2 , 0 0 0} & 32,000\end{array}$

Equity Valuation

Free Cash Flow Valuation

Lesson	Location	PDF Pg	Revised	Correction	
Non-operating Assets and Firm Value	Solution 4	81	22 March	Replace: Firm value $=\underline{1.1559(1.04)}=\$ 24.583$.	With: $0.0889-0.04$

Equity Valuation

Market-Based Valuation: Price and Enterprise Value Multiples

Lesson	Location	$\begin{gathered} \text { PDF } \\ \text { Pg } \end{gathered}$	Revised	Correction	
Price/Earnings: Valuation based on Forecasted Fundamentals	Example 8 Solution 1	$\begin{gathered} 117- \\ 118 \end{gathered}$	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: Value of the stock derived from $\operatorname{FCFE}=¥ 6,980$. Forecasted 2014 EPS = $¥ 720$. $¥ 6,980 / ¥ 720=9.7$ is the justified forward P / E.	With: Value of the stock derived from $\operatorname{FCFE}=¥ 6,980$. Forecasted 2020 EPS = $¥ 720$. $¥ 6,980 / ¥ 720=9.7$ is the justified forward P/E.
Price/Earnings: Using the P / E in Valuation	Example 11	124	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: These data are reported in Exhibit 6, which lists companies in order of descending earnings growth forecast.	With: These data are reported in Exhibit 6, which lists companies in order of descending earnings growth forecast.
Price/Earnings: Using the P / E in Valuation	Example 11 Solution 1	125	$\begin{gathered} 29 \mathrm{Jan} \\ 2024 \end{gathered}$	Replace: Among the three companies identified as underpriced (based on their low trailing P/Es), CenturyLink has the highest fiveyear EPS growth forecast and the lowest PEG ratio.	With: Among the three companies identified as underpriced (based on their low forward P/Es), CenturyLink has the highest five-year EPS growth forecast and the lowest PEG ratio.
Price/Earnings: Using the P / E in Valuation	Example 11 Solution 1	125	$\begin{gathered} 29 \mathrm{Jan} \\ 2024 \end{gathered}$	Replace: Among the other companies in Exhibit 6, Comcast and Charter Communications had the highest EPS growth forecasts and the second and third lowest PEG ratios.	With: Among the other companies in Exhibit 5, Comcast and Charter Communications had the highest EPS growth forecasts and the third lowest and lowest PEG ratios.

Lesson	Location	PDF	Revised	Correction											
Price/Earnings: Using the P / E in Valuation	Example 11	124	$\begin{aligned} & 29 \text { Jan } \\ & 2024 \end{aligned}$	Replace: Company AT\&T Comcast Corporation CenturyLink China Telecom Charter Communica tions Verizon Windstrea m Holdings Mean Median	$\begin{gathered} \text { Traili } \\ \text { ng } \\ \text { P/E } \end{gathered}$	Forwar d P/E	Five-Year EPS Growth Forecast	$\begin{gathered} \text { Forward } \\ \text { PEG } \\ \text { Ratio } \end{gathered}$	Beta	th:	Trailing P/E	Forward P/E	$\begin{gathered} \text { Five-Year } \\ \text { EPS } \\ \text { Growth } \\ \text { Forecast } \end{gathered}$	Forward PEG Ratio	Beta
					13.20	9.36	1.83\%	7.20	0.56	AT\&T	13.20	9.36	1.83\%	5.11	0.56
					16.23	12.92	11.20	1.45	1.09	Comcast Corporation	16.23	12.92	11.29	1.14	1.09
					NMF	8.89	8.52	1.04	0.81	CenturyLink	NMF	8.89	8.52	1.04	0.81
					13.14	10.31	6.90	1.90	0.81	China Telecom	13.14	10.31	6.90	1.49	0.81
					70.67	30.32	45.30	1.56	1.24	Charter Communicat ions	70.67	30.32	45.30	0.67	1.24
					15.03	11.99	2.51	5.99	0.50	Verizon	15.03	11.99	2.51	4.78	0.50
					19.01	16.29	3.19	5.96	0.45	Windstream Holdings	19.01	16.29	3.19	5.11	0.45
					24.55	14.30	11.30	3.59	0.78	Mean	24.55	14.30	11.30	2.76	0.78
					15.03	11.99	6.90	1.90	0.78	Median	15.03	11.99	6.90	1.49	0.78

Lesson	Location	$\begin{gathered} \text { PDF } \\ \text { Pg } \end{gathered}$	Revised	Correction	
Enterprise Value/EBITDA	Example 34 Solution	$\begin{gathered} 164- \\ 165 \end{gathered}$	$\begin{gathered} 22 \text { March } \\ 2024 \end{gathered}$	Replace: CL has only one class of common stock, no preferred shares, and no minority interest. For companies that have multiple classes of common stock, market capitalization includes the total value of all classes of common stock. Similarly, for companies that have preferred stock and/or minority interest, the market value of preferred stock and the amount of minority interest are added to market capitalization. EV also includes the value of long-term debt obligations. Per CL's balance sheet, this is the sum of long-term debt ($\$ 6,354$ million), the current portion of long-term debt ($\$ 0$ million), and other non-current liabilities ($\$ 2,034$ million), or $\$ 8,388$ million. Typically, the book value of long-term debt is used in EV. If, however, the market value of the debt is readily available and materially different from the book value, the market value should be used. So, CL's EV is $\$ 57,372$ million $+\$ 8,388$ million $-\$ 720$ million $=\$ 65,040$ million. For CL, we conclude that EV/EBITDA $=(\$ 65,040$ million $) /(\$ 3,960$ million) $=16.4$.	With: CL has only one class of common stock, no preferred shares, but has minority interest. For companies that have multiple classes of common stock, market capitalization includes the total value of all classes of common stock. Similarly, for companies that have preferred stock and/or minority interest, the market value of preferred stock and the amount of minority interest are added to market capitalization. EV also includes the value of long-term debt obligations. Per CL's balance sheet, this is the sum of long-term debt ($\$ 6,354$ million), the current portion of long-term debt ($\$ 0$ million), and other non-current liabilities ($\mathbf{\$ 2 , 2 6 9}$ million), or $\mathbf{\$ 8 , 6 2 3}$ million. Typically, the book value of long-term debt is used in EV. If, however, the market value of the debt is readily available and materially different from the book value, the market value should be used. So, CL's EV is \$57,372 million + \$8,623 million + \$299 million - \$720 million $=\mathbf{\$ 6 5 , 5 6 8}$ million. For CL, we conclude that EV/EBITDA = (\$65,568 million)/(\$3,960 million) $=16.6$.

Lesson	Location	$\begin{gathered} \text { PDF } \\ \text { Pg } \end{gathered}$	Revised	Correction	
Valuation Indicators: Issues in Practice	Practice Problem 22 and solution	$\begin{aligned} & 195 \\ & \text { and } \\ & 207 \end{aligned}$	$\begin{gathered} 10 \text { April } \\ 2024 \end{gathered}$	Replace: 22. Based on Exhibits 1 and 2, the normalized earnings per share for Centralino as calculated by Risso should be closest to: A. €2.94. B. €3.21. C. €5.07. Replace: Average ROE \times BVPS $=0.131 \times € 22.48=€ 2.94$.	With: 22. Based on Exhibits 1 and 2, the normalized earnings per share for Centralino as calculated by Risso should be closest to: A. €2.98. B. €3.21. C. €5.07. With: Average ROE \times BVPS $=0.131 \times € 22.48=€ 2.98$.
Valuation Indicators: Issues in Practice	Practice Problem 30-31, Exhibit 2	199	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: Required rate of ROE	With: Required rate of return
Valuation Indicators: Issues in Practice	Solution 22	207	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: The book value of (common) equity, or simply book value, is the value of shareholders' equity less any value attributable to the preferred stock: €1,027 million - €84 million = €943 million. Current book value per share (BVPS) is calculated as €943 million/41.94 million $=€ 22.48$. So, normalized EPS is calculated as Average ROE \times BVPS $=0.131 \times € 22.48=€ 2.94$.	With: The book value of (common) equity, or simply book value, is the value of shareholders' equity less any value attributable to the preferred stock: $€ 1,027$ million $-€ 80$ million $=€ 947$ million. Current book value per share (BVPS) is calculated as $€ 947$ million/41.94 million $=\boldsymbol{€} 22.58$. So, normalized EPS is calculated as Average ROE \times BVPS $=0.131 \times € 22.48=€ 2.96$.

Equity Valuation

Residual Income Valuation

Lesson	Location	PDF Pg	Revised	Correction			
Single-Stage and Multistage Residual Income Valuation	Example 11 Solution 2	236	29 Jan 2024	Replace: Current book value per share Present value of 6 years' residual income Terminal value $[P T-B T=(1.8 \times B T)-B T]$ Present value of terminal value (at 7.95%) Value per share	$\begin{array}{r} \\ \\ \\ 31.580 \\ 17.755 \\ \\ \\ \underline{18,856} \\ € 52.711 \end{array}$	With: Current book value per share Present value of 6 years' residual income Terminal value $[P T-B T=(1.8 \times B T)-B T]$ Present value of terminal value (at 7.95%) Value per share	$\begin{array}{rr} & 15.000 \\ & 17.755 \\ 31.580 & \\ & \underline{\mathbf{1 9}, \mathbf{9 5 6}} \\ € 52.711 \end{array}$

Equity Valuation

Private Company Valuation

Lesson	Location	PDF Pg	Revised	Correction	
Private Company	Example 12	326	$\begin{gathered} 29 \text { Jan } \\ 2024 \end{gathered}$	Replace:	
Income-Based				FLI's Normalized Operating Income after Taxes	
Approach				As of 31 December (in SGD)	As Adjusted
				Revenues	50,000,000
				Cost of goods sold	30,000,000
				Gross profit	20,000,000
				SG\&A expenses	3,700,000
				EBIT	16,300,000
				Depreciation and amortization	900,000
				Earnings before interest and taxes	15,400,000

Using FLI's tax rate of 17% and additional information that FLI had capital expenditures of SGD 1,200,000 and increased working capital by SGD 500,000 over the period, Khan solves for a base-year FCFF of SGD 11,982,000:

FCFF $=\operatorname{EBIT}(1-$ Tax rate $)+$ Depreciation(Tax rate) $-\Delta$ LT Assets $-\Delta$ Working Capital

SGD 11,982,000
$=16,300,000 \times(1-0.17)+900,000 \times 0.17-1,200,000-500,000$
With:

FLI's Normalized Operating Income after Taxes	
As of 31 December (in SGD)	As Adjusted
Revenues	$50,000,000$
Cost of goods sold	$30,000,000$
Gross profit	$20,000,000$
SG\&A expenses	$3,700,000$
EBITDA	$16,300,000$
Depreciation and amortization	900,000
Earnings before interest and taxes	$15,400,000$

Using FLI's tax rate of 17% and additional information that FLI had capital expenditures of SGD 1,200,000 and increased working capital by SGD 500,000 over the period, Khan solves for a base-year FCFF of SGD 11,982,000:

FCFF $=$ EBITDA(1 - Tax rate) Depreciation(Tax rate) $-\Delta$ LT Assets $-\Delta$ Workin Capital

SGD 11,982,000
$=16,300,000 \times(1-0.17)+900,000 \times 0.17-1,200,000-500,000$

Fixed Income

The Term Structure and Interest Rate Dynamics

Lesson	Location	PDF Pg	Revised	Correction	
Spot Rates, Forward Rates, and the Forward Rate Model	Example 1 Solution 3 \& 4	348	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: 3. Calculate the forward price of a two-year bond to be issued in one year: $F_{A, B-A}=F_{1,3}$ 4. Interpret your answer to Problem 3. Solution: The forward contract price of $D F_{1,2}=0.8262$ is the price agreed on today ...	With: 3. Calculate the forward price of a two-year bond to be issued in one year: $F_{A, B-A}=F_{1,2} .$ 4. Interpret your answer to Problem 3. Solution: The forward contract price of $\boldsymbol{F}_{1,2}=0.8262$ is the price agreed on today ...
YTM in Relation to Spot and Forward Rates	Equations	360	$\begin{gathered} 29 \mathrm{Jan} \\ 2024 \end{gathered}$	Replace: $\begin{aligned} & D F_{1}^{\text {new }}=\frac{D F_{2}}{D F_{1}}=\frac{0.9246}{0.9615}=0.9616 \\ & D F_{2}^{\text {new }}=\frac{D F_{3}}{D F_{1}}=\frac{0.8890}{0.9615}=0.9246 \end{aligned}$ Using Equation 10, the price of the forward contract one year from today is $F_{2,1}^{\text {new }}=\frac{D F_{2}^{\text {new }}}{D F_{1}^{\text {new }}}=\frac{0.9246}{0.9615}=0.9616 .$	With: $\begin{aligned} & D F_{1}^{\text {new }}=\frac{D F_{2}}{D F_{1}}=\frac{0.9246}{0.9615}=\mathbf{0 . 9 6 1 5} \\ & D F_{2}^{\text {new }}=\frac{D F_{3}}{D F_{1}}=\frac{0.8890}{0.9615}=0.9246 \end{aligned}$ Using Equation 10, the price of the forward contract one year from today is $F_{2,1}^{\text {new }}=\frac{D F_{2}^{\text {new }}}{D F_{1}^{\text {new }}}=\frac{0.9246}{0.9615}=\mathbf{0 . 9 6 1 5}$
YTM in Relation to Spot and Forward Rates	Third paragraph	360	$\begin{gathered} 29 \mathrm{Jan} \\ 2024 \end{gathered}$	Replace: The price of the forward contract is nearly unchanged.	With: The price of the forward contract is unchanged.

Lesson	Location	PDF Pg	Revised	Correction	
Active Bond Portfolio Management	$3^{\text {rd }} \text { and } 4^{\text {th }}$ paragraphs	363	$\begin{gathered} 29 \text { Jan } \\ 2024 \end{gathered}$	Replace: The 6% five-year bond purchased for 100 returns 120.61 in two years [($6 \times 1.02)+6+108.49]$, which consists of the first year's coupon reinvested at the one-year rate, the second annual coupon, and the capital gain on the sale of the 6% bond with three years to maturity at an unchanged three-year yield of 4% $\left[108.49=6 / 1.04+6 /(1.04)^{2}+106 /(1.04)^{3}\right]$. The annualized rate of return is 9.823% [solve for r, where $(120.61 / 100)=(1+r)^{2}$]. The 7% six-year bond purchased at par returns 125.03 in two years $[(7 \times 1.02)+7+110.89]$ with an annualized return of 11.817%. The excess return of nearly 2% results from both higher coupon income than the five-year matched maturity bond as well as a larger capital gain on the sale of the 7% bond with four years to maturity at an unchanged four-year yield of $5 \%[110.89=$ $\left.7 / 1.05+7 /(1.05)^{2}++7 /(1.05)^{3}+107 /(1.05)^{4}\right]$.	With: The 6% five-year bond purchased for 100 returns $\mathbf{1 1 7 . 6 7}$ in two years [$(6 \times 1.02)+6+105.55]$, which consists of the first year's coupon reinvested at the one-year rate, the second annual coupon, and the capital gain on the sale of the 6% bond with three years to maturity at an unchanged three-year yield of 4% $\left[105.55=6 / 1.04+6 /(1.04)^{2}+106 /(1.04)^{3}\right]$. The annualized rate of return is 8.476% [solve for r, where $(117.67 / 100)=(1+r)^{2}$]. The 7% six-year bond purchased at par returns 121.23 in two years $[(7 \times 1.02)+7+107.09]$ with an annualized return of 10.10\%. The excess return of nearly 2% results from both higher coupon income than the five-year matched maturity bond as well as a larger capital gain on the sale of the 7% bond with four years to maturity at an unchanged four-year yield of 5% [107.09 = $\left.7 / 1.05+7 /(1.05)^{2}++7 /(1.05)^{3}+107 /(1.05)^{4}\right]$.
The Maturity Structure of Yield Curve Volatilities	Equation 15	382	$\begin{gathered} 22 \text { March } \\ 2024 \end{gathered}$	Replace: Delete extra minus symbol at the end of equation $--3.3333 \Delta z_{10}$	With: $-3.3333 \Delta z_{10}$

Fixed Income

The Arbitrage-Free Valuation Framework

| Lesson | Location | PDF Pg | Revised | Correction | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Term Structure
 Models | First
 sentence
 under The
 Kalotay-
 Williams-
 Fabozzi
 model
 subheader | 441 | 22 March | Replace:
 The Kalotay-Williams-Fabozzi (KWF) model is analogous to the
 Ho-Lee model in that it assumes constant drift, no mean
 reversion, and constant volatility. | With:
 The Kalotay-Williams-Fabozzi (KWF) model is analogous to the
 Ho-Lee model in that it assumes constant drift, no mean
 reversion, and constant volatility. |
| Term Structure
 Models | Practice
 Problems
 11-19 | 452 | 22 March | Replace:
 Statement 1: Increasing the number of paths increases the
 estimate's statistical accuracy. | With:
 Statement 4: Increasing the number of paths increases the
 estimate's statistical accuracy. |

Fixed Income

Valuation and Analysis of Bonds with Embedded

Options

Fixed Income

Credit Analysis Model

Lesson	Location	PDF Pg	Revised	Correction	
Modeling Credit Risk and the Credit Valuation Adjustment	Fifth paragraph	545	$\begin{gathered} 22 \text { March } \\ 2024 \end{gathered}$	Replace: Column 7 gives the expected loss for each date. This is the LGD times the POD. For example, if default occurs on Date 3, the expected loss is 0.6894 per 100 of par value. The exposure is 94.2596. At 40\% recovery, the LGD is 56.5558. Assuming no prior default, the POD for that date is 1.2189%. The expected loss of 0.6894 is calculated as 56.5558 times 1.2189%.	With: Column 7 gives the expected loss for each date. This is the LGD times the POD. For example, if defaultoccurs on Date 3, the expected loss is 0.6894 per 100 of par value. The exposure is 94.2596. At 40% recovery, the LGD is 56.5558. Assuming no prior default, the POD for that date is 1.2189%. The expected loss of 0.6894 is calculated as 56.5558 times 1.2189%.
Credit Analysis for Securitized Debt	Exhibit 3	597	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Add tree graphic to Exhibit 3:	
Credit Analysis for Securitized Debt	Question 21	599	$\begin{aligned} & 22 \text { March } \\ & 2024 \end{aligned}$	Replace: Based on the research department assumption about the probability of default in Question 10 and her own assumption in Question 11, which action does Ibarra most likely expect from the credit rating agencies?	With: Based on the research department assumption about the probability of default in Question 18 and her own assumption in Question 19, which action does Ibarra most likely expect from the credit rating agencies?

| Lesson | Location | PDF Pg | Revised | Correction | |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- |
| Credit Analysis
 for Securitized
 Debt | Solution 17 | 609 | 29 Jan | Replace:
 Valuation of a four-year, 6% coupon bond under no default is
 computed in the solution to Question 8 as $1,144.63$. | With:
 Valuation of a four-year, 6% coupon bond under no default is
 computed in the solution to Question 16 as $1,144.63$. |

Alternative Investments

Introduction to Commodities and Commodity

Derivatives

Lesson	Location	PDF Pg	Revised	Correction	
Commodity Indexes	Practice Problems relates to questions 16-22	$\begin{aligned} & 211- \\ & 212 \end{aligned}$		Replace: Statement 1 Roll returns are generally negative when a futures market is in contango. Statement 2 Roll returns are generally positive when a futures market is in backwardation.	With: Statement 4 Roll returns are generally negative when a futures market is in contango. Statement 5 Roll returns are generally positive when a futures market is in backwardation.

Ethical and Professional Standards
 Guidance for Standards I-VII

Lesson	Location	PDF Pg	Revised	Correction			
Standard IV(A): Recommended Procedures	Text under Incident- Reporting Procedures header	266		29 Jan	Replace:		
Report potentially unethical and illegal activities in the firm.							With:
:---							
Members and candidates should be aware of their firm's							
policies related to whistleblowing and encourage their firm to							
adopt industry best practices in this area. Many firms are							
required by regulatory mandates to establish confidential and							
anonymous reporting procedures that allow employees to							
report potentially unethical and illegal activities in the firm.							

Application of the Code and Standards: Level II

Lesson	Location	PDF Pg	Revised	Correction	
JR and Associates	Second to last sentence on page	398	$\begin{gathered} 29 \text { Jan } \\ 2024 \end{gathered}$	Replace: Ode now has three and a half years of experience in the investment industry.	With: Ode now has two and a half years of experience in the investment industry.
JR and Associates	Case Questions Solution 9	403	$\begin{gathered} 29 \text { Jan } \\ 2024 \end{gathered}$	Replace: B is incorrect. To be a CFA charterholder, Ode needs to have completed the required four years of work experience.	With: B is incorrect. To be a CFA charterholder, Ode needs to have completed the required three years of work experience.
JR and Associates	Case Questions Solution 9	403	$\begin{gathered} 29 \text { Jan } \\ 2024 \end{gathered}$	Replace: C is incorrect. The fact that she has completed all three levels of the CFA Program does not make Ode a CFA charterholder. To be a CFA charterholder, she must also have the required four years of work experience.	With: C is incorrect. The fact that she has completed all three levels of the CFA Program does not make Ode a CFA charterholder. To be a CFA charterholder, she must also have the required three years of work experience.

