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1Readers interested in the theoretical underpinnings of ML algorithms, such as random forest or neural networks, should read Hastie, Tibshirani, 
and Friedman (2009) and Goodfellow, Bengio, and Courville (2016).

2There are also numerous academic studies on using ML to predict returns. For example, ML techniques have been applied in a single-country 
setting by Gu, Kelly, and Xiu (2020) to the United States, by Abe and Nakayama (2018) to Japan, and by Leippold, Wang, and Zhou (2022) to 
China’s A-share markets. Similarly, in a multi-country/regional setting, ML has been applied by Tobek and Hronec (2021) and Leung, Lohre, 
Mischlich, Shea, and Stroh (2021) to developed markets and by Hanauer and Kalsbach (2022) to emerging markets.

3For linear equity models, see, for example, Grinold and Kahn (1999).

Introduction
In recent years, machine learning (ML) has been a popular 
technique in various domains, ranging from streaming video 
and online shopping recommendations to image detection 
and generation to autonomous driving. The attraction and 
desire to apply machine learning in finance are no different.

• “The global AI fintech market is predicted to grow at a 
CAGR of 25.3% between 2022 and 2027” (Columbus 
2020).

• “A survey of IT executives in banking finds that 85% 
have a ‘clear strategy’ for adopting AI in developing 
new products and services” (Nadeem 2018).

Putting aside the common and widespread confusion 
between artificial intelligence (AI) and ML (see, e.g., Cao 
2018; Nadeem 2018), the growth of ML in finance is pro-
jected to be much faster than that of the overall industry 
itself, as the previous quotes suggest. Faced with this 
outlook, practitioners may want answers to the following 
questions:

• What does ML bring to the table compared with tradi-
tional techniques?

• How do I make ML for finance work? Are there special 
considerations? What are some common pitfalls?

• What are some examples of ML applied to finance?

In this chapter, we explore how ML can be applied from 
a practitioner’s perspective and attempt to answer many 
common questions, including the ones above.1

The first section of the chapter discusses practi-
tioners’ motivations for using ML, common challenges in 

implementing ML for finance, and solutions. The second 
section discusses several concrete examples of ML appli-
cations in finance and, in particular, equity investments.

Motivations, Challenges, 
and Solutions in Applying ML 
in Investments
In this section, we discuss reasons for applying ML, the 
unique challenges involved, and how to avoid common 
pitfalls in the process.

Motivations

The primary attraction of applying ML to equity investing, as 
with almost all investment-related endeavors, is the promise 
of higher risk-adjusted return. The hypothesis is that these 
techniques, explicitly designed for prediction tasks based on 
high-dimensional data and without any functional form spec-
ification, should excel at predicting future equity returns.

Emerging academic literature and collective practitioner 
experience support this hypothesis. In recent years, practi-
tioners have successfully applied ML algorithms to predict 
equity returns, and ML-based return prediction algorithms 
have been making their way into quantitative investment 
models. These algorithms have been used worldwide in 
both developed and emerging markets, for large-cap and 
small-cap investment universes, and with single-country 
or multi-country strategies.2 In general, practitioners have 
found that ML-derived alpha models outperform those 
generated from more traditional linear models3 in predicting 
cross-sectional equity returns.

© 2023 CFA Institute Research Foundation. All rights reserved.
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In addition to predicting equity returns, ML has been 
used to predict intermediate metrics known to predict 
future returns. For example, practitioners have used ML to 
forecast corporate earnings and have found ML-derived 
forecasts to be significantly more accurate and infor-
mative than other commonly used earnings prediction 
models.4 Another use of ML in equity investing developed 
by Robeco’s quantitative researchers has been to predict 
not the entire investment universe’s return but the returns 
of those equities that are likely to suffer a severe price drop 
in the near future. Investment teams at Robeco have found 
that ML techniques generate superior crash predictions 
compared with those from linear models using traditional 
metrics, such as leverage ratio or distance to default.5

What drives the outperformance of ML over other known 
quantitative techniques? The main conclusion from prac-
titioners and academics is that because ML algorithms 
do not prespecify the functional relationship between the 
prediction variables (equity return, future earnings, etc.) 
and the predictors (metrics from financial statements, past 
returns, etc.), ML algorithms are not constrained to a linear 
format as is typical of other techniques but, rather, can 
uncover interaction and nonlinear relationships between 
the input features and the output variable(s).

4This conclusion was replicated and supported also by academics. For example, see Cao and You (2021).

5For more information on using ML for crash prediction, see Swinkels and Hoogteijling (2022).

6For more details, see Birge and Zhang (2018).

7Neural networks incorporate nonlinearity through activation functions in each neuron. Without activation functions, neural networks, regardless 
of their depth, reduce down to traditional linear models commonly used in finance. For more on activation functions, see Goodfellow et al. (2016).

Interaction and nonlinear effects

The interaction effect occurs when the prediction outputs 
cannot be expressed as a linear combination of the individ-
ual inputs because the effect of one input depends on the 
value of the other ones. Consider a stylistic example of pre-
dicting equity price based on two input features: reported 
earnings and an accounting red flag, where the red-flag 
input is binary: 0 (no cause of concern) and 1 (grave con-
cern). The resulting ML output with these two inputs may 
be that when the red-flag input is 0, the output is linearly 
and positively related to reported earnings; in contrast, 
when the red-flag input is 1, the output is a 50% decrease 
in price regardless of the reported earnings. Exhibit 1 
illustrates this stylistic example.

ML prediction can also outperform the traditional linear 
model prediction due to nonlinear effects. There are many 
empirically observed nonlinear effects that linear models 
cannot model. For example, there is a nonlinear relation-
ship between a firm’s credit default swap (CDS) spread 
and its equity returns because equity can be framed as an 
embedded call option on a firm’s assets, thereby introduc-
ing nonlinearity.6 Exhibit 2 illustrates this example. Many 
ML algorithms, particularly neural networks,7 explicitly 

Exhibit 1. Illustration of the Interaction Effect between Accounting Red Flags 
and Equity Returns

Return

Accounting Red Flag = 0

Accounting Red Flag = 1

Reported Earnings

Source: Robeco.
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introduce nonlinearity into the model setup, facilitating 
nonlinearity modeling.

Empirically, academics and practitioners have found that 
the interaction effect accounts for a large portion of ML 
techniques’ outperformance, while the jury is still out on 
whether nonlinear effects contribute positively to the out-
performance. A well-known study in the field by Gu, Kelly, 
and Xiu (2020, p. 2258) found that “the favorable perfor-
mance of [ML algorithms] indicates a benefit to allowing for 
potentially complex interactions among predictors.” In the 
study, comparing the performance of purely linear models 
with that of generalized linear models, the authors note that 
“the generalized linear model … fails to improve on the per-
formance of purely linear methods (R2

OOS of 0.19%). The fact 
that this method uses spline functions of individual features, 
but includes no interaction among features, suggests that 
univariate expansions provide little incremental information 
beyond the [purely] linear model” (Gu et al. 2020, p. 2251). 
However, other studies have found that both interaction and 
nonlinear effects contribute positively to ML models’ outper-
formance (see, e.g., Abe and Nakayama 2018; Swinkels and 
Hoogteijling 2022; Choi, Jiang, and Zhang 2022).

Find relationships from the data deluge

Another attraction of applying ML to financial markets is 
the promise of having the algorithm discover relation-
ships not specified or perhaps not known by academics 
and practitioners—that is, data mining, which historically 
has been a pejorative in quantitative finance circles. 

8Examples include k-fold cross-validation, dropout, and regularization. For deeper discussions, see Hastie et al. (2009) and Goodfellow et al. 
(2016).

Another term being used, perhaps with a more positive 
connotation, is “knowledge discovery.”

With the ongoing information and computing revolution and 
the increased popularity of quantitative finance, the amount 
of financial data is growing at a rapid pace. This increased 
amount of data may or may not embody relevant informa-
tion for investment purposes. Since many of the data types 
and sources are new, many investors do not have a strong 
prior opinion on whether and how they can be useful. Thus, 
ML algorithms that are designed to look for relationships 
have become attractive for practitioners and academics in 
the hope that, even without specifying a hypothesis on the 
economic relationship, the ML algorithm will figure out the 
link between inputs and outputs. Although ML algorithms 
have built-in mechanisms to combat overfitting or discover-
ing spurious correlations between input features and output 
predictions,8 caution must still be taken to avoid discovering 
nonrepeatable and nonreplicable relationships and patterns. 
Later in this chapter, we will address this issue further and 
consider other challenges practitioners face when imple-
menting ML in live portfolios. But first, we will discuss what 
makes the financial market different from other domains in 
which ML has shown tremendous success.

Unique Challenges of Applying ML 
in Finance

When applying ML for investments, great care must be 
taken because financial markets differ from domains where 

Exhibit 2. Illustration of the Nonlinear Relationship between a CDS 
and Equity Returns

Return

CDS Spread

Source: Robeco.
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ML has made tremendous strides. These differences can 
mitigate many of the specific advantages ML algorithms 
enjoy, making them less effective in practice when applied 
in real-life situations. A few of these differences follow.

Signal-to-noise ratio and system 
complexity

Financial data have a low signal-to-noise ratio. For a given 
security, any one metric is generally not a huge determinant 
of how that security will perform. For example, suppose 
Company XYZ announced great earnings this quarter. Its 
price can still go down after the announcement because 
earnings were below expectations, because central banks 
are hiking interest rates, or because investors are generally 
long the security and are looking to reduce their positions. 
Compare this situation with a high signal-to-noise domain—
for example, streaming video recommendation systems. 
If a person watches many movies in a specific genre, 
chances are high that the person will also like other movies 
in that same genre. Because financial returns compress 
high-dimensional information and drivers (company-specific, 
macro, behavioral, market positioning, etc.) into one dimen-
sion, positive or negative, the signal-to-noise ratio of any 
particular information item is generally low.

It is fair to say that the financial market is one of the most 
complex man-made systems in the world. And this com-
plexity and low signal-to-noise ratio can cause issues 
when ML algorithms are not applied skillfully. Although ML 
algorithms are adept at detecting complex relationships, 
the complexity of the financial market and the low signal-
to-noise ratio that characterizes it can still pose a problem 
because they make the true relationship between drivers of 
security return and the outcome difficult to detect.

Small vs. big data

Another major challenge in applying ML in financial markets 
is the amount of available data. The amount of financial data 
is still relatively small compared with many domains in which 
ML has thrived, such as the consumer internet domain or 
the physical sciences. The data that quantitative investors 
traditionally have used are typically quarterly or monthly. 
And even for the United States, the market with the longest 
available reliable data, going back 100 years, the number of 
monthly data points for any security we might wish to con-
sider is at most 1,200. Compared with other domains where 
the amount of data is in the billions and trillions, the quantity 
of financial data is minuscule. To be fair, some of the newer 
data sources, or “alternative data,” such as social media 
posts or news articles, are much more abundant than tradi-
tional financial data. However, overall, the amount of financial 
data is still small compared with other domains.

9There have been various studies on how greed and fear affect market participants’ decision-making process. See, for example, Lo, Repin, and 
Steenbarger (2005).

The small amount of financial data is a challenge to ML 
applications because a significant driver of an ML algo-
rithm’s power is the amount of available data (see Halevy, 
Norvig, and Pereira 2009). Between a simple ML algorithm 
trained on a large set of data versus a sophisticated ML 
algorithm trained on a relatively smaller set of data, the 
simpler algorithm often outperforms in real-life testing. With 
a large set of data, investors applying ML can perform true 
cross-validation and out-of-sample testing to minimize 
overfitting by dividing input data into different segments. 
The investor can conduct proper hyperparameter tuning 
and robustness checks only if the amount of data is large 
enough. The small amount of financial data adds to the 
challenges of applying ML to financial markets mentioned 
earlier—the financial markets’ high system complexity and 
low signal-to-noise ratio.

Stationarity vs. adaptive market, 
irrationality

Finally, what makes financial markets challenging for ML 
application in general is that markets are nonstationary. 
What we mean is that financial markets adapt and change 
over time. Many other domains where ML algorithms have 
shined are static systems. For example, the rules govern-
ing protein unfolding are likely to stay constant regardless 
of whether researchers understand them. In contrast, 
because of the promised rewards, financial markets “learn” 
as investors learn what works over time and change their 
behavior, thereby changing the behavior of the overall 
market. Furthermore, because academics have been suc-
cessful over the last few decades in discovering and pub-
lishing drivers of market returns—for example, Fama and 
French (1993)—their research also increased knowledge of 
all market participants and such research changes market 
behavior, as noted by McLean and Pontiff (2016).

The adaptive nature of financial markets means not only 
that ML algorithms trained for investment do not have a 
long enough history with which to train the model and a 
low signal-to-noise ratio to contend with but also that the 
rules and dynamics that govern the outcome the models 
try to predict also change over time. Luckily, many ML algo-
rithms are adaptive or can be designed to adapt to evolving 
systems. Still, the changing system calls into question 
the validity and applicability of historical data that can be 
used to train the algorithms—data series that were not 
long enough to begin with. To further complicate the issue, 
financial markets are man-made systems. Their results 
are the collective of individual human actions, and human 
beings often behave irrationally—for example, making deci-
sions based on greed or fear.9 This irrationality characteris-
tic does not exist in many of the other domains in which ML 
has succeeded.
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How to Avoid Common Pitfalls When 
Applying ML in Finance

This section addresses some potential pitfalls when apply-
ing ML to financial investment.10

Overfitting

Because of the short sample data history, overfitting is 
a significant concern when applying ML techniques in 
finance. This concern is even stronger than when applying 
traditional quantitative techniques, such as linear regres-
sion, because of the high degrees of freedom inherent in 
ML algorithms. The result of overfitting is that one may get 
a fantastic backtest, but out-of-sample, the results will not 
live up to expectations.

There are some common techniques used in ML 
across all domains to combat overfitting. They include 
cross-validation, feature selection and removal, regulariza-
tion, early stopping, ensembling, and having holdout data.11 
Because of the lower sample data availability in finance, 
some of these standard techniques might not be applica-
ble or work as well in the financial domain as in others.

However, there are also advantages to working in the 
financial domain. The most significant advantage is human 
intuition and economic domain knowledge. What we mean 
by this is that investors and researchers applying machine 
learning can conduct “smell tests” to see whether the rela-
tionships found by ML algorithms between input features 
and output predictions make intuitive or economic sense. 
For example, to examine the relationship between inputs 
and outputs, one can look at Shapley additive explanation 
(SHAP) value, introduced by Lundberg and Lee (2017). SHAP 
value is computed from the average of the marginal con-
tribution of the feature when predicting the targets, where 
the marginal contribution is computed by comparing the 
performance after withholding that variable from the fea-
ture set versus the feature set that includes the variable.

Exhibit 3 plots SHAP values from Robeco’s work on using 
ML to predict equity crashes,12 where various input features 
are used to predict the probability of financial distress of 
various stocks in the investment universe. The color of 
each dot indicates the sign and magnitude of a feature, 
where red signals a high feature value and blue denotes a 
low feature value. Take Feature 25, for example. As the fea-
ture value increases (as indicated by the color red), the ML 
algorithm predicts a higher probability of financial distress. 

10For additional readings, see, for example, López de Prado (2018); Arnott, Harvey, and Markowitz (2019); Leung et al. (2021).

11See Hastie et al. (2009) and Goodfellow et al. (2016) for more discussion on these techniques.

12For more details, see Swinkels and Hoogteijling (2022).

13See Jessen and Lando (2013) for more discussion on distance to default.

14See Harvey, Liu, and Zhu (2016) and Hou, Xue, and Zhang (2020) for more discussion on the replicability crisis in finance.

And as the feature value decreases (as indicated by the 
color blue), the ML algorithm predicts a lower probability of 
financial distress. With this information, experienced inves-
tors can apply their domain knowledge to see whether the 
relationship discovered by the ML algorithm makes sense. 
For example, if Feature 25, in this case, is the leverage ratio 
and Feature 1 is distance to default,13 then the relation-
ship may make sense. However, if the features are flipped 
(Feature 25 is distance to default and Feature 1 is the 
leverage ratio), then it is likely that the ML algorithm made a 
mistake, possibly through overfitting.

Another approach to mitigate overfitting and having ML 
algorithms find spurious correlations is to try to eliminate 
it from the start. Ex post explanation via SHAP values and 
other techniques is useful, but investors can also apply 
their investment domain knowledge to curate the input set 
to select those inputs likely to have a relationship with the 
prediction objective. This is called “feature engineering” in 
ML lingo and requires financial domain knowledge. As an 
example, when we are trying to predict stock crash proba-
bility, fundamental financial metrics such as profit margin 
and debt coverage ratio are sensible input features for the 
ML algorithm, but the first letter of the last name of the CEO, 
for example, is likely not a sensible input feature.

Replicability

There is a debate about whether there is a replicability 
crisis in financial research.14 The concerns about replicabil-
ity are especially relevant to results derived from applying 
ML because, in addition to the usual reasons for replicabil-
ity difficulties (differences in universe tested, p-hacking, 
etc.), replicating ML-derived results also faces the following 
challenges:

• The number of tunable variables in ML algorithms is 
even larger than in the more traditional statistical 
techniques.

• ML algorithms are readily available online. Investors 
can often download open-sourced algorithms from 
the internet without knowing the algorithm’s specific 
version used in the original result, random seed, and 
so on. In addition, if one is not careful, different imple-
mentations of the same algorithm can have subtle 
differences that result in different outcomes.

To avoid replicability challenges, we suggest ML inves-
tors first spend time building up a robust data and code 
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infrastructure to conduct ML research and experiments. 
This includes, but is not limited to, the following:

• A robust system for code version control, a way to 
specify and fix all parameters used in the algorithm, 
including ML algorithm version number, investment 
universe tested, hyperparameters, feature sets used, 
and so on

• Documentation of all the tested iterations and hypoth-
eses, including those that failed to show good results 
(in other words, showing the research graveyards)

15This is called “point-in-time” in the quant investment industry.

Such documentation listed above may not be possible 
regarding publicly disclosed results, but it should at least 
be attempted when discussing and verifying results within 
the same organization.

Lookahead bias/data leakage

Lookahead bias is another commonly known issue for 
experienced quant investors that applies to ML. An example 
would be that if quarterly results are available only 40 days 
after the quarter end, the quarterly data should be used 
only when available historically15 and not at the quarter 
end date.

Exhibit 3. SHAP Value between Input Features and ML Output Predicting 
Financial Distress
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Other cases can be more subtle. For example, if one con-
ducts research over a period that includes the tech bubble 
and its subsequent crash (2000–2002) and the investment 
universe tested does not include information technology 
(IT) firms, then it is incumbent upon the investor to provide 
a sensible reason why IT firms are not included.

Related to lookahead bias and a more general problem 
directly related to ML is the problem of data leakage. Data 
leakage occurs when data used in the training set contain 
information that can be used to infer the prediction, infor-
mation that would otherwise not be available to the ML 
model in live production.

Because financial data occur in time series, they are often 
divided chronologically into training, validation, and testing 
sets. ML predictive modeling aims to predict outcomes the 
model has not seen before. One form of data leakage can 
occur if information that should be in one set ends up in 
another among the three sets of data (training, validation, 
and testing). When this occurs, the ML algorithm is evalu-
ated on the data it has seen. In such cases, the results will 
be overly optimistic and true out-of-sample performance 
(that is, the live performance of the algorithm) will likely 
disappoint. This phenomenon is called “leakage in data.”

Another type of data leakage is called “leakage in features.” 
Leakage in features occurs when informative features about 
the prediction outcome are included but would otherwise 
be unavailable to ML models at production time, even if 
the information is not in the future. For example, suppose 
a company’s key executive is experiencing serious health 
issues but the executive has not disclosed this fact to the 
general public. In that case, including that information in the 
ML feature set may generate strong backtest performance, 
but it would be an example of feature leakage.

Various techniques can be applied to minimize the possibil-
ity of data leakage. One of the most basic is to introduce a 
sufficient gap period between training and validation sets 
and between validation and testing. For example, instead of 
having validation sets begin immediately after the end of the 
training set, introduce a time gap of between a few months 
and a few quarters to ensure complete separation of data. 
To prevent data leakage, investors applying ML should think 
carefully about what is available and what is not during the 
model development and testing phases. In short, common 
sense still needs to prevail when applying ML algorithms.

Implementation gap

Another possible pitfall to watch out for when deploying ML 
algorithms in finance is the so-called implementation gap, 

16For additional readings, see, for example, Avramov, Chordia, and Goyal (2006); López de Prado (2018); Hou et al. (2020); Avramov, Cheng, and 
Metzker (2022).

17In addition to the SHAP values discussed in Lundberg and Lee (2017), recent works in the area of explainable machine learning include Li, 
Turkington, and Yazdani (2020); Li, Simon, and Turkington (2022); and Daul, Jaisson, and Nagy (2022).

defined as trading instruments in the backtest that are 
either impossible or infeasible to trade in live production. 
An example of an implementation gap is that the ML algo-
rithm generates its outperformance in the backtest mainly 
from small- or micro-cap stocks. However, in live trading, 
either these small- or micro-cap stocks may be too costly 
to trade because of transaction costs or there might not be 
enough outstanding shares available to own in the scale 
that would make a difference to the strategy deploying 
the ML algorithm. As mentioned, implementation affects 
all quant strategies, not just those using ML algorithms. 
But ML algorithms tend to have high turnover, increasing 
trading cost associated with smaller market-cap securities. 
Similar to small- or micro-cap stocks, another example of an 
implementation gap is shorting securities in a long–short 
strategy. In practice, shorting stocks might be impossible 
or infeasible because of an insufficient quantity of a given 
stock to short or excessive short borrowing costs.16

Explainability and performance attribution

A main criticism of applying machine learning in finance is 
that the models are difficult to understand. According to Gu 
et al. (2020, p. 2258), “Machine learning models are often 
referred to as ‘black boxes,’ a term that is in some sense a 
misnomer, as the models are readily inspectable. However, 
they are complex, and this is the source of their power and 
opacity. Any exploration of the interaction effect is vexed 
by vast possibilities for identity and functional forms for 
interacting predictors.”

Machine learning for other applications might not need to 
be fully explainable at all times; for example, if the ML algo-
rithm suggests wrong video recommendations based on 
the viewers’ past viewing history, the consequences are 
not catastrophic. However, with billions of investment dol-
lars on the line, asset owners demand managers that use 
ML-based algorithms explain how the investment decisions 
are made and how performance can be attributed. In recent 
years, explainable machine learning has emerged in the 
financial domain as a focus topic for both practitioners and 
academics.17

The fundamental approach to recent explainable machine 
learning work is as follows:

1. For each input feature, fi, in the ML algorithm, fix its 
value as x. Combine this fixed value for fi with all other 
sample data while replacing feature fi with the value x. 
Obtain the prediction output.

2. Average the resulting predictions. This is the partial 
prediction at point x.
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3. Now range the fixed value x over feature fi’s typical 
range to plot out the resulting function. This is called 
the “partial dependence response” to feature fi.

This response plot, an example of which is illustrated in 
Exhibit 4, can then be decomposed into linear and nonlin-
ear components.

Similarly, one can estimate the pairwise-interaction part 
of the ML algorithm, computed using joint partial predic-
tion of features fi and fj, by subtracting the partial pre-
diction of each feature independently. An example of the 
pairwise-interaction result is shown in Exhibit 5.

Exhibits 3–5 allow ML investors to understand how the 
input features affect the output prediction. To conduct 
performance attribution of an ML portfolio and decompose 
it into the various parts (linear, interaction, and nonlinear), 
one can extract the partial dependence responses and 
form portfolios from them. With this approach, one can get 
return attribution, as shown in Exhibit 6.

Sample ML Applications 
in Finance
We have seen the common pitfalls when applying ML to 
finance and the strategies to mitigate them. Let us now 
look at examples of ML applied to financial investing.18

18For more general applications of ML to finance, see López de Prado (2019).

19This problem has been studied in numerous recent papers—for example, Abe and Nakayama (2018); Rasekhschaffe and Jones (2019); Gu et al. 
(2020); Choi, Jiang, and Zhang (2022); Hanauer and Kalsbach (2022).

20In addition to cross-sectional returns, Gu et al. (2020) also study the time-series problem.

21However, when compared with other fields, the amount of data here is still miniscule, as noted before.

Predicting Cross-Sectional Stock 
Returns

In this section, we discuss specifically using ML to predict 
cross-sectional stock returns.

Investment problem

Perhaps the most obvious application of ML to financial 
investments is to directly use ML to predict whether each 
security’s price is expected to rise or fall and whether to 
buy or sell those securities. Numerous practitioners and 
academics have applied ML algorithms to this prediction 
task.19

The ML algorithms used in this problem are set up to 
compare cross-sectional stock returns. That is, we are 
interested in finding the relative returns of securities in our 
investment universe rather than their absolute returns.20 
The ML algorithms make stock selection decisions rather 
than country/industry timing and allocation decisions. 
Stock selection is an easier problem than the timing and 
allocation problem, because the algorithms have more data 
to work with.21

Exhibit 4. Linear and Nonlinear Decomposition of an ML Algorithm’s Output 
to Input Feature fi
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Methodology

This problem is set up with the following three major 
components:

1. Investment universe: US, international, emerging 
market, and so on

2. ML algorithms: (boosted) trees/random forests, neural 
networks with l layers, and so on, and ensembles thereof

3. Feature set: typical financial metrics that are used 
in linear models, such as various price ratios (value), 
profitability (quality), and past returns (momentum)

Note that for Item 3, by using a very limited feature set, the 
ML investor is essentially applying her domain knowledge 
and imposing a structure on the ML algorithm to counter 
the limited data challenge discussed in the previous 
section.

Exhibit 5. Example of the Pairwise-Interaction Effect
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Exhibit 6. Example ML Portfolio Return Attribution
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Results

There are five consistent results that various practitioner 
and academic studies have found. First and foremost, 
there is a statistically significant and economically mean-
ingful outperformance of ML algorithm prediction versus 
the traditional linear approach. For example, in forming a 
long–short decile spread portfolio from (four-layer) neural 
network–generated stock return prediction, a well-known 

study in equity return prediction (Gu et al. 2020) found that 
the strategy has an annualized out-of-sample Sharpe ratio 
of 1.35 under value weighting and 2.45 under equal weight-
ing. For comparison, the same portfolio constructed from 
ordinary least squares (OLS) prediction with the same input 
features produced a Sharpe ratio of 0.61 and 0.83 for value 
weighting and equal weighting, respectively. Exhibit 7 
shows the value-weighting results.

Exhibit 7. Out-of-Sample Performance of Benchmark OLS Portfolio 
vs. Various ML Portfolios, Value Weighting

OLS-3+H PLS PCR

Pred. Avg.
Std. 
Dev.

Sharpe 
Ratio Pred. Avg.

Std. 
Dev.

Sharpe 
Ratio Pred. Avg.

Std. 
Dev.

Sharpe 
Ratio

Low (L) −0.17 0.40 5.90 0.24 −0.83 0.29 5.31 0.19 −0.68 0.03 5.98 0.02

2 0.17 0.58 4.65 0.43 −0.21 0.55 4.96 0.38 −0.11 0.42 5.25 0.28

3 0.35 0.60 4.43 0.47 0.12 0.64 4.63 0.48 0.19 0.53 4.94 0.37

4 0.49 0.71 4.32 0.57 0.38 0.78 4.30 0.63 0.42 0.68 4.64 0.51

5 0.62 0.79 4.57 0.60 0.61 0.77 4.53 0.59 0.62 0.81 4.66 0.60

6 0.75 0.92 5.03 0.63 0.84 0.88 4.78 0.64 0.81 0.81 4.58 0.61

7 0.88 0.85 5.18 0.57 1.06 0.92 4.89 0.65 1.01 0.87 4.72 0.64

8 1.02 0.86 5.29 0.56 1.32 0.92 5.14 0.62 1.23 1.01 4.77 0.73

9 1.21 1.18 5.47 0.75 1.66 1.15 5.24 0.76 1.52 1.20 4.88 0.86

High (H) 1.51 1.34 5.88 0.79 2.25 1.30 5.85 0.77 2.02 1.25 5.60 0.77

H – L 1.67 0.94 5.33 0.61 3.09 1.02 4.88 0.72 2.70 1.22 4.82 0.88

ENet+H GLM+H RF

Pred Avg
Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio

Low (L) −0.04 0.24 5.44 0.15 −0.47 0.08 5.65 0.05 0.29 −0.09 6.00 −0.05

2 0.27 0.56 4.84 0.40 0.01 0.49 4.80 0.35 0.44 0.38 5.02 0.27

3 0.44 0.53 4.50 0.40 0.29 0.65 4.52 0.50 0.53 0.64 4.70 0.48

4 0.59 0.72 4.11 0.61 0.50 0.72 4.59 0.55 0.60 0.60 4.56 0.46

5 0.73 0.72 4.42 0.57 0.68 0.70 4.55 0.53 0.67 0.57 4.51 0.44

6 0.87 0.85 4.60 0.64 0.84 0.84 4.53 0.65 0.73 0.64 4.54 0.49

7 1.01 0.87 4.75 0.64 1.00 0.86 4.82 0.62 0.80 0.67 4.65 0.50

8 1.16 0.88 5.20 0.59 1.18 0.87 5.18 0.58 0.87 1.00 4.91 0.71

9 1.36 0.80 5.61 0.50 1.40 1.04 5.44 0.66 0.96 1.23 5.59 0.76

High (H) 1.66 0.84 6.76 0.43 1.81 1.14 6.33 0.62 1.12 1.53 7.27 0.73

H – L 1.70 0.60 5.37 0.39 2.27 1.06 4.79 0.76 0.83 1.62 5.75 0.98

(continued)
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GBRT+H NN1 NN2

Pred Avg
Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio

Low (L) −0.45 0.18 5.60 0.11 −0.38 −0.29 7.02 −0.14 −0.23 −0.54 7.83 −0.24

2 −0.16 0.49 4.93 0.35 0.16 0.41 5.89 0.24 0.21 0.36 6.08 0.20

3 0.02 0.59 4.75 0.43 0.44 0.51 5.07 0.35 0.44 0.65 5.07 0.44

4 0.17 0.63 4.68 0.46 0.64 0.70 4.56 0.53 0.59 0.73 4.53 0.56

5 0.34 0.57 4.70 0.42 0.80 0.77 4.37 0.61 0.72 0.81 4.38 0.64

6 0.46 0.77 4.48 0.59 0.95 0.78 4.39 0.62 0.84 0.84 4.51 0.65

7 0.59 0.52 4.73 0.38 1.11 0.81 4.40 0.64 0.97 0.95 4.61 0.71

8 0.72 0.72 4.92 0.51 1.31 0.75 4.86 0.54 1.13 0.93 5.09 0.63

9 0.88 0.99 5.19 0.66 1.58 0.96 5.22 0.64 1.37 1.04 5.69 0.63

High (H) 1.11 1.17 5.88 0.69 2.19 1.52 6.79 0.77 1.99 1.38 6.98 0.69

H – L 1.56 0.99 4.22 0.81 2.57 1.81 5.34 1.17 2.22 1.92 5.75 1.16

NN3 NN4 NN5

Pred Avg
Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio Pred Avg

Std. 
Dev.

Sharpe 
Ratio

Low (L) −0.03 −0.43 7.73 −0.19 −0.12 −0.52 7.69 −0.23 −0.23 −0.51 7.69 −0.23

2 0.34 0.30 6.38 0.16 0.30 0.33 6.16 0.19 0.23 0.31 6.10 0.17

3 0.51 0.57 5.27 0.37 0.50 0.42 5.18 0.28 0.45 0.54 5.02 0.37

4 0.63 0.66 4.69 0.49 0.62 0.60 4.51 0.46 0.60 0.67 4.47 0.52

5 0.71 0.69 4.41 0.55 0.72 0.69 4.26 0.56 0.73 0.77 4.32 0.62

6 0.79 0.76 4.46 0.59 0.81 0.84 4.46 0.65 0.85 0.86 4.35 0.68

7 0.88 0.99 4.77 0.72 0.90 0.93 4.56 0.70 0.96 0.88 4.76 0.64

8 1.00 1.09 5.47 0.69 1.03 1.08 5.13 0.73 1.11 0.94 5.17 0.63

9 1.21 1.25 5.94 0.73 1.23 1.26 5.93 0.74 1.34 1.02 6.02 0.58

High (H) 1.83 1.69 7.29 0.80 1.89 1.75 7.51 0.81 1.99 1.46 7.40 0.68

H – L 1.86 2.12 6.13 1.20 2.01 2.26 5.80 1.35 2.22 1.97 5.93 1.15

Notes: OLS-3+H is ordinary least squares that preselect size, book-to-market, and momentum using Huber loss rather than the standard l2 loss. 
PLS is partial least squares. PCR ENet+H, GLM+H, RF, GBRT+H, and NN1 to NN5 are neural networks with one to five hidden layers.

Source: Gu et al. (2020).

Exhibit 7. Out-of-Sample Performance of Benchmark OLS Portfolio 
vs. Various ML Portfolios, Value Weighting (continued)
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The second consistent result is that what drives the out-
performance of ML-based prediction versus that of linear 
models is that ML algorithms not only are limited to linear 
combinations of feature sets but can formulate higher-order 
functional dependencies, such as nonlinearity and interac-
tion. To test whether higher-order effects can contribute to 
security prediction, one can compare linear machine learn-
ing models (for example, LASSO and RIDGE) with models that 
consider nonlinear and complex interaction effects (such 
as trees and neural networks). Investors at Robeco have 
found that higher-order machine learning models outper-
form their simpler linear competitors. The outperformance of 
higher-order machine learning models was also confirmed 
by academics,22 as evident from Exhibit 7.

Between nonlinearity and interactions, interactions have the 
greater impact on model performance. This also can be seen 
in Exhibit 7, where the performance of the generalized linear 
model with Huber loss (GLM+H) is inferior to those models 
that consider interaction, boosted trees, and neural networks.

Third, ML investors have found that the features that most 
determine prediction outcomes are remarkably consis-
tent regardless of the specific ML algorithms used. This 
is somewhat of a surprise because the various ML algo-
rithms, such as boosted trees and neural networks, use 
dissimilar approaches to arrive at their outcomes. However, 
the similar importance assigned to certain input features 
confirms that these are salient characteristics that drive 
cross-sectional stock returns. From Robeco’s own expe-
rience and various published studies, the characteristics 
that dominate cross-sectional returns are found to be 
short-term reversals, stock and sector return momentum, 
return volatility, and firm size.

Fourth, simple ML algorithms outperform more complicated 
ML algorithms. This result is very likely because, since there 
are not much data to train on, the simpler models, due 
to their parsimonious nature, are less likely to overfit and 
thereby perform better out of sample. We confirm this obser-
vation from Exhibit 7, where the best out-of-sample Sharpe 
ratio is achieved by a neural network with four hidden layers.

Fifth, the more data there are, the better the ML prediction 
algorithm performs. This is fundamental to the nature of ML 
algorithms, as observed by Halevy et al. (2009) for general 
machine learning applications and confirmed by Choi, Jiang, 
and Zhang (2022) in a financial context.

Predicting Stock Crashes

In this section, we discuss the example of using ML to 
predict stock crashes.

22For more discussion, see Choi, Jiang, and Zhang (2022) and Gu et al. (2020).

23This ML prediction task is studied in Swinkels and Hoogteijling (2022).

24Also called low-volatility equity, among other names.

Investment problem

Rather than predicting the rank order of future returns, 
another application for ML algorithms may simply be to pre-
dict the worst-performing stocks—that is, those most likely 
to crash.23 The results of this prediction can be applied 
in such strategies as conservative equities,24 where the 
securities most likely to crash are excluded from the 
investment universe. That is, win by not losing.

Methodology

A crash event for equities is defined as a significant drop 
in a stock’s price relative to peers; thus, it is idiosyncratic 
rather than systematic when a group of stocks or the 
market crashes. The ML prediction is set up as follows:

1. Investment universe: US, international, emerging 
market, and so on

2. ML algorithms: logistic regression, random forest, gra-
dient boosted tree, and ensemble of the three

3. Feature set: various financial distress indicators—such 
as distance to default, volatility, and market beta—in 
addition to traditional fundamental financial metrics

As one can see, the problem setup is very similar to that 
of cross-sectional stock return prediction. The main dif-
ferences are the objective function of the ML algorithm 
(ML prediction goal) and the input feature set (feature engi-
neering). Care should be taken in determining both compo-
nents to ensure the prediction algorithm solves the stated 
problem and performs well out of sample.

Results

The performance of the portfolio of stocks with the highest 
distress probability versus that of the market is shown in 
Exhibit 8. We see that the performance of the ML algorithm 
is greater than that obtained using traditional approaches 
for both developed and emerging markets.

Looking at the sector composition of the likely distressed 
stocks, shown in Exhibit 9, we see that the ML algorithm 
choices are reasonable, as technology stocks dominated 
during the bursting of the dot-com bubble in the early 
2000s and financial stocks dominated during the Global 
Financial Crisis of 2008. Overall, we see a wide sector dis-
persion for the likely distressed stocks, indicating that the 
prediction return is mostly from stock selection rather than 
sector allocation.
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Predicting Fundamental Variables

In this section, we discuss the example of using ML to pre-
dict company fundamentals.

Investment problem

Predicting stock returns is notoriously hard. As mentioned 
previously, there are potentially thousands of variables 

(dimensions) that can affect a stock’s performance—
investor sentiment, path dependency, and so on. The var-
ious factors, endogenous and exogenous, ultimately get 
translated into only a one-dimensional response—higher 
return (up) or lower return (down). An easier task may be 
to use ML algorithms to predict company fundamentals, 
such as return on assets and corporate earnings. Company 
fundamentals also have the additional beneficial character-
istic of being more stable than stock returns, making them 

Exhibit 8. Market Return vs. Return of a Portfolio Consisting of Likely 
Distressed Stocks, Estimated under Various Prediction Approaches
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Exhibit 9. Sector Composition of the ML-Predicted Likely Distressed Stocks
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better suited for ML predictions. Because of these reasons, 
company fundamentals prediction is another popular appli-
cation of ML algorithms in the financial domain. In this sec-
tion, we look at the findings from a popular study25 where 
ML algorithm-predicted earnings forecasts are compared 
with those from more traditional approaches.

Methodology

The investment universe is the US stock market, excluding 
the financial and utility sectors. The study was conducted 
over the period 1975–2019.

Six different ML models were tested: three linear ML models 
(OLS, LASSO, and ridge regression) and three nonlinear 
ML models (random forest, gradient boosting regression, 
and neural networks). Six traditional models were used 
as a benchmark to compare against ML models: random 
walk, autoregressive model, models from Hou, van Dijk, 
and Zhang (2012; HVZ) and So (2013; SO), the earnings 
persistence model, and the residual income model. Various 
ensembles of these models were also tested.

The feature set is composed of 28 major financial state-
ment line items and their first-order differences. So, there 
are 56 features in total.

Results

The results are shown in Exhibit 10. Consistent with the 
results for cross-sectional stock returns, Cao and You 
(2021) found that machine learning models give more 
accurate earnings forecasts. The linear ML models are 
more accurate than the benchmark traditional models (by 
about 6%), and the nonlinear ML models are more accurate 
than the linear ML models (by about 1%–3% on top of the 
linear model). Not only are the ML models more accurate; 
the traditional models autoregression, HVZ, SO, earnings 
persistence, and residual income were not more accurate 
than the naive random walk model. The ensemble models, 
traditional or machine learned, were more accurate than 
the individual models alone, with the order of accuracy pre-
served: ML ensemble beating traditional methods, ensem-
ble and nonlinear ML ensemble beating linear ML ensemble.

The ML models’ better performance can be attributed to the 
following:

• They are learning economically meaningful predictors 
of future earnings. One can make this conclusion by 
examining feature importance through such tools as 
Shapley value.

25For more details, see Cao and You (2021). The problem of ML company fundamentals prediction was also examined in Alberg and Lipton (2017).

26The MSCI All Country World Index (ACWI) covers stocks from 26 countries.

27Some studies have concluded that in the A-share market, retail trading volume can be up to 80% of the total. In recent years, institutional 
market trading has proportionally increased as the Chinese market matures.

• The nonlinearity and interaction effects are useful in 
further refining the accuracy of forward earnings pre-
dictions, as evidenced by the higher performance of 
nonlinear ML models compared with linear ML models.

The takeaway from this study is the same as in the previ-
ous two examples. That is, ML models can provide value 
on top of traditional models (especially due to nonlinearity 
and interaction components), and ensembling is one of the 
closest things to a free lunch in ML, much like diversifica-
tion for investing.

NLP in Multiple Languages

So far, we have discussed problems where ML algorithms 
are used for prediction. Another major category for ML 
applications is textual language reading, understanding, 
and analysis, which is called “natural language process-
ing” (NLP). Modern NLP techniques use neural networks to 
achieve the great capability improvements they have made 
in recent years. NLP is discussed in other chapters of this 
book, so we will not discuss the techniques extensively 
here, but we will discuss one NLP application that can be 
interesting for practitioners.

Investment problem

Investing is a global business, and much of the relevant 
information for security returns is written in the local lan-
guage. In general, a global portfolio may invest in 20–30 
different countries,26 while a typical investor may under-
stand only two or three languages, if that. This fact pres-
ents a problem, but fortunately, it is a problem that we can 
attempt to solve through ML algorithms.

From the perspective of Western investors, one language 
of interest is Chinese. The Chinese A-share market is 
both large and liquid. But understanding Chinese texts on 
A-share investing can be challenging because Chinese is 
not an alphabetical language and it follows very different 
grammatical constructs than English. In addition, since 
retail investors dominate the Chinese A-share market,27 
a subculture of investment slang has developed, where 
terms used are often not standard Chinese, thereby com-
pounding the problem for investors without a strong local 
language understanding.

In a paper by Chen, Lee, and Mussalli (2020), the authors 
applied ML-based NLP techniques to try to understand 
investment slang written in Mandarin Chinese by retail 
investors in online stock discussion forums. We discuss the 
results of that paper here.
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Methodology

1. Download and process investment blogs actively par-
ticipated in by Chinese A-share retail investors.

2. Apply embedding-based NLP techniques and train on 
the downloaded investment blogs.

3. Starting with standard Chinese sentiment dictionaries, 
look for words surrounding these standard Chinese 
sentiment words. By the construct of the embedding 

models, these surrounding words often have the same 
contextual meaning as the words in the standard 
sentiment dictionaries, whether they are standard 
Chinese or slang. An example of this is shown in 
Exhibit 11.

Exhibit 10. Prediction Accuracy Results from Cao and You (2021)

Mean Absolute Forecast Errors Median Absolute Forecast Errors

Average

Comparison with RW Comparison with RW

DIFF t-Stat %DIFF Average DIFF t-Stat %DIFF

Benchmark model

RW 0.0764 0.0309

Extant models

AR 0.0755 −0.0009 −2.51 −1.15% 0.0308 −0.0001 −0.22 −0.24%

HYZ 0.0743 −0.0022 −3.63 −2.82% 0.0311 0.0002 0.64 0.76%

EP 0.0742 −0.0022 −2.79 −2.85% 0.0313 0.0004 1.02 1.42%

RI 0.0741 −0.0023 −3.15 −3.07% 0.0311 0.0002 0.66 0.74%

SO 0.0870 0.0105 5.19 13.78% 0.0347 0.0039 5.50 12.56%

Linear machine learning models

OLS 0.0720 −0.0045 −5.04 −5.83% 0.0306 −0.0002 −0.60 −0.73%

LASSO 0.0716 −0.0048 −5.32 −6.31% 0.0304 −0.0004 −1.11 −1.43%

Ridge 0.0718 −0.0047 −5.19 −6.11% 0.0305 −0.0003 −0.87 −1.08%

Nonlinear machine learning models

RF 0.0698 −0.0066 −6.44 −8.64% 0.0296 −0.0012 −3.10 −3.97%

GBR 0.0697 −0.0068 −6.08 −8.86% 0.0292 −0.0016 −4.23 −5.34%

ANN 0.0713 −0.0051 −5.38 −6.67% 0.0310 0.0001 0.24 0.38%

Composite models

COMP_EXT 0.0737 −0.0027 −3.89 −3.58% 0.0311 0.0002 0.56 0.66%

COMP_LR 0.0717 −0.0047 −5.25 −6.16% 0.0305 −0.0004 −1.02 −1.33%

COMP_NL 0.0689 −0.0075 −6.99 −9.87% 0.0292 −0.0017 −3.92 −5.55%

COMP_ML 0.0693 −0.0071 −7.12 −9.35% 0.0294 −0.0015 −3.75 −4.81%

Notes: RW stands for random walk. AR is the autoregressive model. HVZ is the model from Hou et al. (2012). SO is the model from So (2013). 
EP is the earnings persistence model. RI is the residual income model. RF stands for random forests. GBR stands for gradient boost regression. 
ANN stands for artificial neural networks. COMP_EXT is an ensemble of traditional models. COMP_LR is an ensemble of linear ML models. COMP_NL 
is an ensemble of nonlinear ML models. COMP_ML is an ensemble of all ML models.

Source: Cao and You (2021).



Handbook of Artificial Intelligence and Big Data Applications in Investments

CFA Institute Research Foundation  17

Results

Using this technique, we can detect investment words 
used in standard Chinese and the slang used by retail 
investors. In Exhibit 11, the red dot illustrates the Chinese 
word for “central bank.” The column on the right side of 
Exhibit 11 shows the words closest to this word, and the 
closest is the word that translates to “central mother” 
in Chinese. This is a slang word often used by Chinese 
retail investors as a substitute for the word “central bank” 
because central banks often take actions to calm down 

28In contrast to most of the world’s markets, in the Chinese stock market, gains are colored red whereas losses are colored green.

market tantrums, much like a mother does to her children 
when they have tantrums.

The embedded words also exhibit the same embedded 
word vector arithmetic made famous by the following 
example (see Mikolov, Yih, and Zweig 2013): King – Man + 
Woman ≈ Queen. For example, Exhibit 12 shows the 
following embedded Chinese word relationship: Floating 
red – Rise + Fall ≈ Floating green.28

Exhibit 11. Embedded Chinese Words from A-Share Investor Blogs Projected 
onto a 3-D Space

Source: Chen et al. (2020).

Exhibit 12. Chinese Word Embedding Still Preserves Vector Arithmetic

Source: Chen et al. (2020).
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This study illustrates that ML techniques not only are 
useful for numerical tasks of results prediction but can 
also be useful in other tasks, such as foreign language 
understanding.

Conclusion
In this chapter, we gave an overview of how ML can be 
applied in financial investing. Because there is a lot of 
excitement around the promise of ML for finance, we 
began the chapter with a discussion on how the finan-
cial market is different from other domains in which ML 
has made tremendous strides in recent years and how it 
would serve the financial ML practitioner to not get carried 
away by the hype. Applying ML to the financial market is 
different from applying ML in other domains in that the 
financial market does not have as much data, the market 
is nonstationary, the market can often behave irrationally 
because human investor emotions are often a big driver 
of market returns, and so on. Given these differences, we 
discussed several common pitfalls and potential mitiga-
tion strategies when applying machine learning to finan-
cial investing.

In the second half of the chapter, we discussed several 
recent studies that have applied ML techniques to invest-
ment problems. Common findings of these studies are 
as follows:

• ML techniques can deliver performance above and 
beyond traditional approaches if applied to the right 
problem.

• The source of ML algorithms’ outperformance includes 
the ability to consider nonlinear and interaction effects 
among the input features.

• Ensembling of ML algorithms often delivers better 
performance than what individual ML algorithms can 
achieve.

We showed that in addition to predicting numerical results, 
ML could also help investors in other tasks, such as sen-
timent analysis or foreign language understanding. Of 
course, the applications discussed here are only a small 
subset of what ML can do in the financial domain. Other 
possible tasks include data cleaning, fraud detection, 
credit scoring, and trading optimization.

Machine learning is a powerful set of tools for investors, 
and we are just at the beginning of the journey of applying 
ML to the investment domain. Like all techniques, machine 
learning is powerful only if applied to the right problems 
and if practitioners know the technique’s limits. Having said 
that, we believe one can expect to see a lot more innova-
tion and improved results coming out of this space going 
forward.
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2. ALTERNATIVE DATA AND AI IN INVESTMENT 
RESEARCH
Ingrid Tierens, PhD, CFA
Managing Director, Goldman Sachs Global Investment Research

Dan Duggan, PhD
Vice President, Goldman Sachs Global Investment Research

Artificial Intelligence (AI) and alternative data are not new 
concepts in investment research or finance. AI can be 
broadly defined as using computers to mimic human prob-
lem solving. Alternative data can be broadly defined as any 
data in a nonstructured format. The arrival of computers 
in financial firms and the arrival of nonstructured data in 
digital format meant that entrepreneurial finance profes-
sionals started to see opportunities to address financial 
use cases by leveraging these tools instead of primarily 
relying on the human brain, helped by pen, paper, an 
abacus, or a calculator. If you define investment decision 
making as trying to make objective sense of a wide spec-
trum of diverse data to allocate capital, the appeal of AI and 
alternative data to improve investment decisions should 
not come as a surprise. Although early attempts to codify 
human decision making may not meet today’s definition of 
AI and alternative data, because they may have been either 
too ambitious or have had a marginal impact by today’s 
standards, they paved the way for an innovation cycle that 
is by now well under way in the financial services industry, 
well past its early adoption cycle, and affecting all facets of 
how financial firms conduct their business. From enhanc-
ing investment insights to constructing better portfolios, 
optimizing trading decisions, streamlining client service, 
reducing operational issues, better aligning products to 
client needs, and extracting better business intelligence 
insights, AI and alternative data are leaving their finger-
prints everywhere.

Embedding AI and alternative data into the day-to-day 
activities of an investment analyst is not mission impossi-
ble. It can be compared with executing a New Year’s reso-
lution, such as learning a new language, getting in better 
shape, or running your first marathon. Resolutions become 
reality through commitment, persistence, and resilience. 
The journey of Goldman Sachs Global Investment Research 
(GIR) over the past five-plus years illustrates that you do 
not need expensive “equipment” (i.e., an unlimited budget) 
and an army of “coaches with name recognition” (i.e., hard-
to-find talent) to make a difference. Hard work by open-
minded people who collectively buy into the mission, bring 
different components to the table, learn from each other, 
and collaborate to execute on the joint mission to produce 
leading-edge investment insights will lead to a noticeable 

impact. This chapter demonstrates that you can start small 
and that investment analysts are not bystanders but play 
a crucial role in making AI and alternative data part of their 
lexicon and research process.

Where Can AI and Alternative 
Data Be Additive? Investment 
Research Use Cases
Alternative data and AI, including machine learning (ML) and 
natural language processing (NLP), are not an end in and of 
themselves but are additional tools in the research toolkit 
to create differentiated investment insights. The key to their 
use in investment research is appreciating that alterna-
tive data and AI do not define the investment thesis but, 
instead, help prove or disprove it. AI and nontraditional data 
can be additive across the spectrum of investment strat-
egies, as long as the AI and data efforts are aligned with a 
particular strategy. Comparing and contrasting systematic 
and fundamental investment strategies can be enlighten-
ing in this regard.

At first glance, AI and alternative data sound as if they may 
only provide an advantage to systematic strategies because 
of their quantitative nature. Within the AI and alternative 
data spectrum, however, there are many niche datasets and 
techniques that may provide added value for fundamental 
strategies that can successfully incorporate data and data 
science expertise in their investment process. Let us take a 
closer look at use cases for each strategy.

For a systematic strategy where breadth matters more than 
depth, datasets and data analysis techniques need to be 
applicable across many securities. Therefore, it should not 
come as a surprise that systematic managers focus their 
time and effort more on alternative datasets or techniques 
that can be applied to a large investment universe. Factors 
extracted from text have been added to many quant 
investment processes, because NLP analysis can be easily 
repeated across company filings, news articles, and other 
documents that are available for large sets of securities. 
In addition, sophisticated econometric techniques can be 
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helpful to convert individual alphas into more solid multifac-
tor alphas and, in turn, into more robust portfolios. But even 
within systematic strategies, AI and alternative data use 
may differ significantly, especially when the investment 
horizon is taken into account. For example, intraday news 
sentiment indicators may be helpful for high-frequency 
trading strategies, but relatively less value adding for an 
investment professional focused on an investment hori-
zon spanning weeks or months, even if the signals can be 
applied to thousands of securities.

For a fundamental strategy where depth matters more 
than breadth, a portfolio manager or analyst will go deep 
into specific use cases and will put a higher premium on 
precision than a systematic manager dealing with a diver-
sified portfolio and for whom each holding has less of an 
impact on performance. Moreover, niche datasets can be 
more useful for fundamental analysts or portfolio managers 
to complement the information set they draw from, thus 
providing a fuller mosaic view. For example, consumer sen-
timent via social media, brick-and-mortar foot traffic, and 
even consumer search trends around product cycles offer 
different angles to create a more complete picture for con-
sumer-focused sectors. And while sectors with more digital 
presence—for example, retail and technology, media, and 
telecommunications—were early targets for AI and alter-
native data applications, GIR has seen many use cases in 
both single-stock and macro research that may not seem 
like obvious candidates for successful AI or alternative data 
use. Examples include leveraging app downloads in the 
medical device space and localized market share analysis 
for membership in managed care organizations or even 
quarry production.

Which Alternative Data 
Should I Pay Attention To? 
Data Sourcing in a World of 
Overwhelming Data Supply
Keeping up with the supply of alternative and big data is 
a Herculean task. There is an overabundance of providers 
because the barriers to entry in this space have become 
very low. Providers of “traditional” data tend to be estab-
lished organizations that typically offer curated datasets 
and have many years of experience with data due diligence 
and support. With alternative data, the onus of due dili-
gence has shifted from the data producer more to the data 
consumer. There are clear parallels with the production 
and consumption of news, where the due diligence and 
fact checking have similarly shifted from the news provider 
more to the news consumer.

The investment needed to bring onboard vendors, ingest 
data, and test the data can outweigh the benefits of a 
new data source, and the licensing costs can further tip 
the scale. Given how time consuming the due diligence 
process can be, the data acquisition efforts within GIR 
are demand driven. Research analysts as subject matter 
experts in their field typically have a good idea of the type 
of data that may be useful for the investment thesis they 
are pursuing. While they may not have locked in a specific 
data source, may not be aware of the most scalable way 
to obtain the data, or may not be comfortable manipu-
lating unstructured data, working backwards from their 
use case and initial data ideas provides a good starting 
point. Ideas for nontraditional data can emerge when 
analysts question whether they have the full mosaic of 
data to assess their thesis and whether the datasets 
they have used so far continue to provide a compre-
hensive picture.

In addition, new data sources do not necessarily need to 
offer orthogonal information but can also be value adding 
if they offer legacy data in a more scalable and more timely 
fashion. The questions that today’s analysts are trying to 
answer are, in essence, no different from what their pre-
decessors tried to address, such as the following: How 
is a new product launch perceived by the marketplace? 
What do price trends and inventories look like? How do 
changing demographics affect the economy? What is dif-
ferent or alternative is that the analyst no longer needs to 
visit stores, run in-person surveys, or pursue other manual 
paths to get answers. A continually increasing amount 
of relevant information is now available in digital format 
on a much larger scale and in a timelier fashion or more 
frequently than was the case in the past. The qualifier 
“alternative” in alternative data may be a bit of a misnomer 
from that perspective.

Some investment managers who are very data driven 
have a separate, dedicated data-scouting effort, possibly 
an extension of the team that interacts with market data 
vendors and brokers to surface new and novel datasets. 
GIR has not gone down that path, because it has found 
that having the subject matter experts—the analysts—take 
at least co-ownership of identifying relevant data sources 
for their specific use cases outweighs the scalability a 
data scout may bring to the table. Where research ana-
lysts often need help is in how to efficiently analyze the 
relevant data, especially as datasets have become more 
complex and harder to wrangle. GIR’s Data Strategy team, a 
dedicated team with a more focused analytical and quan-
titative background, collaborates with single-stock and 
macro research teams to help them achieve that objective 
through its GS Data Works initiative.
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Use Cases for Alternative Data at Goldman Sachs 
Global Investment Research
With time and people in short supply, GIR’s Data 
Strategy team cannot chase every data idea, so 
it prioritizes data that can be relevant for multiple 
teams or have a high probability of being used by 
at least one team on an ongoing basis. Data budget 
constraints obviously also play a role, especially in 
a research setting where success in execution of 
research ideas mostly accrues to the benefit of third 
parties. Fortunately, the explosion of data includes 
a diverse and abundant number of publicly avail-
able datasets that have proven useful for research 
purposes when properly combined with other data 
sources already being considered. Exhibit 1 provides 
an overview of alternative data types used across 
the Goldman Sachs research division.

• If the research use case has a geographic 
component, geospatial data may enter the 
equation. Datasets comprise not only ded-
icated geospatial measurements, such as 
mobile foot traffic data, satellite imagery, and 
government population and demographic data, 

but also a wide variety of information with 
inherent geographical importance, such as 
store locations or electric vehicle charging sta-
tions. GIR’s understanding of brick-and-mortar 
retail sales is greatly enhanced by analyzing 
locations of retailers and their competitors. 
Similarly, leveraging public environmental 
service data (e.g., location-specific landfill 
capacities and lifetimes) provides a deeper 
understanding of the competitive pricing land-
scape in the environmental services industry.

• If the research use case has an online com-
ponent, digital information can be additive. 
Datasets include app downloads, online point-
of-sale information, website visits, product 
counts and pricing, and search trends. Example 
use cases include quantifying consumer 
interest (e.g., search intensity and active user 
counts) to better understand user engagement 
and assessing product launches or distress 
situations through social media sentiment, app 
downloads, and product-specific data.

• If the research use case can be addressed by 
searching through text, NLP techniques may 
uncover additional insights. This category is 
quite broad, covering a wide range of unstruc-
tured data, from earnings call transcripts and 
company filings to tweets and blog posts. 
David Kostin, the chief US equity strategist 
at Goldman Sachs, publishes a quarterly S&P 
500 Beige Book, which leverages NLP to iden-
tify relevant themes each earnings cycle, one 
of the many research areas where NLP has 
proven to be additive.

The three categories in Exhibit 1 are prone to over-
lap, as many datasets span multiple dimensions. 
Ultimately, the combination of dimensions provides 
a more complete mosaic to better answer most 
research questions. GIR thus often uses more than 
one category to enhance its mosaic. For example, 
a company’s pricing power can be derived not only 
from many product codes and prices (digital) but 
potentially also from its local market share in cer-
tain geographic regions (geospatial). In addition, 
commentary about the company’s pricing power 
during earnings calls may be informative for a 
covering analyst (NLP).

Exhibit 1. Types of Alternative 
Data Used in Goldman Sachs 
Research

Source: Goldman Sachs Global Investment Research.
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Which Component of 
an AI Effort Is the Most 
Time Consuming? The 
Underappreciated Power of 
Doing the Data Grunt Work
Do not expect AI to provide insights if you do not under-
stand the data you apply AI to. Data scientists will be suc-
cessful only if they appreciate the nuances, strengths, and 
weaknesses of the data that go into their modeling efforts. 
Cases of algorithmic bias caused by algorithms trained on 
biased data have made the news in areas outside invest-
ments, but that does not mean investment applications 
are immune to being misguided because of data issues. 
This is an area where investment professionals who may 
not have data science skills but are subject matter experts 
can make a real difference. It is unrealistic to expect a data 
scientist to understand each investment use case, just 
as it is unrealistic to expect each research analyst to be 
a data science expert. However, if the two sides have an 
open mind to learn from each other and iterate, tremendous 
synergies and unique opportunities to expand each other’s 
skill sets will surface.

Before making final decisions on sourcing a particular 
dataset, trying to identify a small test case is strongly 
recommended to give a good flavor of the data without 
time-consuming technological or due diligence hurdles. 
Again, this is where the subject matter expert can play a 
pivotal role. GIR’s data strategists have witnessed more 
than once that a few targeted questions from an experi-
enced analyst during a meeting with a data provider high-
lighted a data shortcoming, which led to shelving the data 
source. Even after onboarding a new data source, you need 
to stay alert because the data may evolve over time, espe-
cially if the provider has limited experience providing data 
or is unfamiliar with how the financial services industry 
may use its data. Goldman Sachs has dealt with situations 
where underlying inputs to the data were removed, added, 
or edited. If, in addition, the data you are sourcing are 
derived from underlying inputs, getting enough transpar-
ency in the algorithms used to create the derived data will 
add more complexity to the task of familiarizing yourself 
with the data. The following are a few important consider-
ations depending on the type of data you are looking at.

• For large and complex datasets, one of the most 
general questions to ask is how comprehensive the 
data are. Certain data fields may have missing values, 
which can bias computational estimates such as 
averages and sums. Such bias has been observed in, 
for example, pricing data attained via web scraping, 
the practice of programmatically extracting publicly- 
available information from websites. The dataset may 

already have a layer of analysis to account for data 
problems, such as automated filling around missing 
data, as well as more sophisticated analysis choices, 
so it is important to understand the assumptions 
underlying that analysis layer. Another question to 
address is whether the data allow you to delve into 
the dimensions that are relevant for your investment 
thesis. For example, do you need style-specific 
breakouts in addition to aggregated counts when you 
lever Stock Keeping Unit (SKU) counts to assess the 
success of a new product launch?

• Even small datasets may be built off an analysis layer 
that relies on sampling, and problems can arise from 
techniques that either undersample or have inherent 
selection biases built in, such as point-of-sale, satel-
lite imagery, or mobile foot traffic trends. Point-of-sale 
information that requires opt-in consumer panels may 
lever discounts for products in return for data use per-
mission, which may skew demographics beyond what 
a simple reweighting can remedy. Similarly, parking 
lot car counts from satellite imagery cannot measure 
covered parking. Mobile foot traffic data have limited 
precision in malls and other multitenant structures. 
Whatever the dataset, the process of its construction 
is vital to assessing its advantages and limitations to 
ultimately determine its appropriateness.

• For NLP and text analysis, understanding details around 
the input data is also vital to interpreting results. For 
example, third-party aggregators of news articles may 
not be able to see paywall content, which may intro-
duce subtle biases. If you search across multiple text 
sources, are source-specific biases and trends easy to 
separate and identify? Another example is sentiment 
analysis. Results from Instagram will likely be different 
from those from Twitter and Reddit. Breaking apart 
trends and results by source can help identify issues 
that could otherwise translate into misguided signals. 
In addition, when NLP is used for sentiment analysis to 
evaluate important themes, topics, or events, guarding 
against false positive or false negative results plays 
an important role and, simultaneously, provides an 
opportunity for a more nuanced view. For example, 
understanding the difference between a poor consumer 
product, on the one hand, and consumer frustrations 
at out-of-stock items or launch logistics issues, on the 
other hand, will not only strengthen results but also 
better inform investable decisions.

The bottom line is that data curation may not sound overly 
exciting, but it can easily determine success or failure. 
No matter how sophisticated the data analysis capabil-
ities are, the AI effort will fail—or, possibly worse, create 
wrong outputs—if the data do not receive at least as 
much attention as the analysis. Again, this is not an area 
that GIR outsources to a different part of the organization. 
While there are parts of the chain that can potentially be 
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handled by teams with more of an operational background, 
such as data ingestion and low-level cleaning, data cura-
tion requires the attention of the people who are familiar 
enough with the business use case—that is, the combina-
tion of the subject matter research experts and the data 
scientists. As a research division, GIR not only consumes 
data but also produces a substantial number of proprietary 
forecasts and indicators. Wearing both hats has made the 
Goldman Sachs research division appreciate even more 
how nontrivial it is to create trustworthy data.

Where Does Data Analysis 
Come In? Looking at the 
Spectrum of Analytical 
Approaches
Like the data landscape, the analysis landscape has 
expanded dramatically. For data analysis, GIR’s Data 
Strategy team also follows a “pull” approach, as opposed 
to pushing a particular analytical technique in search of a 
problem to solve. The team works backwards from the use 
case at hand and collaborates with research analysts on 
the following questions: What are the strengths and weak-
nesses of approaches you have tried in the past? Are the 
outcomes vastly different when you make minor changes 
to your assumptions? Do outliers have a significant impact 

on the results? If any of these answers is yes, it may be 
time to try more sophisticated approaches that can add 
robustness to the research findings.

Also like the data landscape, where data fees and required 
effort are counterbalancing factors to simply load up on 
more data, explainability and required effort need to be 
weighed against the promises of AI. If a more straightfor-
ward approach to analyzing the data works, GIR tries to 
avoid adding unnecessary complexity. For example, when 
tracking inflation as a theme in earnings calls, GIR found 
that simply counting mentions of inflation was a robust 
proxy for a much more complex screen consisting of a 
combination of nearly 200 terms. But when the situation 
calls for more complex analysis, data scientists need to be 
able to provide enough intuition so that research analysts 
are comfortable with the outcomes.

If structured appropriately, analysis frameworks can pro-
vide a significant amount of flexibility and scalability. For 
example, Exhibit 2 shows the results of an analysis of 
the pricing power of US environmental service companies 
based on local market dynamics. The different shades of 
color indicate different spot price ranges, a proxy of pric-
ing power. The circles indicate landfill locations scaled 
to capacity. While the datasets leveraged were specific 
to environmental services, the techniques are not. The 
environmental data were combined with a more mature 
geospatial framework that had previously answered similar 

Exhibit 2. Leveraging Geospatial Analysis Applied in One Industry 
to Another Industry

Spot market price ($/ton)

Landfill location, scaled to capacity
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(click to toggle)

Sources: “Americas Environmental Services: Compounding Unit Profitability amid Building Local Market Share,” published by lead equity analyst 
Jerry Revich, CFA, on 6 April 2021. Analysis by Goldman Sachs Global Investment Research based on data compiled from the Waste Business 
Journal, the New York State Department of Environmental Conservation, the California Water Boards, and other state sources.
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questions for suppliers of heavy building materials, which 
was highlighted in the 2019 “AI Pioneers in Investment 
Management” report by CFA Institute.29

Data science techniques have made remarkable progress, 
from enabling self-driving cars to providing customized 
recommendations for a variety of services and prod-
ucts. Use cases for data science in financial services are 
expanding as well and include, for example, recommenda-
tion engines to customize dissemination of research and 
further advances in trading algorithms that benefit from 
vast amounts of high-frequency order and execution data. 
However, many dynamics in financial markets are inherently 
unstable and adaptive in nature; that is, the amount of data 
that can be used for modeling and running in-sample and 
out-of-sample analyses is limited. This reality puts some 
limitations on how far these techniques can be pushed 
from a purely investment research perspective.

The term “AI” may also suggest that humans have no role 
to play in the analysis phase. As mentioned before, humans 
can add significant value by properly curating data, a nec-
essary input for AI. Similarly, humans will add value by con-
tinuously assessing the results of algorithms. Breakpoints 
in markets, such as the COVID-19 pandemic, keep illustrat-
ing that modeling efforts need to be adapted as markets 
change, and humans play a critical role here. For example, 
some of the Goldman Sachs proprietary “nowcasting” indi-
cators went through that adaptation cycle soon after COVID-
19 became a global phenomenon, and the subject matter 
experts realized how extreme outliers broke down statistical 
relationships used in the creation of the indicators.

Finally, the use of NLP techniques for investment research 
purposes deserves a special mention. GIR’s efforts in this 
field have been geared more toward surfacing specific 
content in a scalable fashion than interpreting the meaning 
or sentiment of written words. Applying NLP to a use case 
where the accuracy of output was essential and consis-
tently finding through human review that the NLP output 
flagged too many false positives and false negatives pro-
vided a good education on some of the boundaries of NLP 
in a research setting.

How Do I Measure Success 
for an AI/Alternative Data 
Effort? Using a Wide Lens 
Instead of a Narrow Lens
The initial hype around AI and alternative data may have 
created unrealistic expectations, which, in turn, led to 
demands for hard evidence that AI and alternative data add 

29“AI Pioneers in Investment Management” (Charlottesville, VA: CFA Institute, 2019). https://www.cfainstitute.org/-/media/documents/survey/
AI-Pioneers-in-Investment-Management.pdf.

to a financial institution’s bottom line, especially in cases 
where new data sources come with a hefty price tag and 
data science expertise is hard to find. It is helpful to keep a 
broad perspective and evaluate these efforts, traditional or 
nontraditional, through multiple lenses:

• Does the approach create alpha? While this is the 
question that most people would like to see a concrete 
answer to, it is unlikely that a single dataset or single 
analysis technique will be an alpha generator. For sys-
tematic strategies, it may be possible to backtest a 
strategy with or without inclusion of the AI component 
and measure the marginal alpha contribution. The 
usual caveats related to backtesting apply, but those 
are no different with or without AI and alternative data.

• Does the AI effort produce unique insights in a more 
timely or more precise fashion? For fundamental strat-
egies, the direct alpha added by the AI effort may be 
hard to assess. That said, quantifying the improve-
ment along specific dimensions can be a useful exer-
cise. For example, GIR’s nowcasting of port congestion 
allowed a more real-time confirmation of the shipping 
disruption Ukraine experienced during the early days 
of its invasion by Russia and as the war has continued 
to evolve. GIR’s distance measurements of vessels 
laying high-voltage cable established estimates for 
revenue-driving business at a very granular level. 
GIR’s market share analyses within multiple industrial 
businesses, analyzed via geo-clustering, provided the 
basis for broader statements about company pricing 
power. These examples also illustrate that the major-
ity of GIR’s AI and alternative data efforts are geared 
toward descriptive analyses that feed into the broader 
investment thesis, as opposed to being prescriptive 
analyses that directly lead to an investment recom-
mendation. Knowing what you hope to get out of the 
process can help focus the effort and suitably ground 
expectations of success.

• Does AI create scalability that saves valuable analyst 
time or allows a research hypothesis to be applied 
across a broader set of securities and/or applied 
more frequently? A good example is NLP analysis of 
earnings transcripts, where a GIR analyst can now 
easily identify themes not only across the stocks in 
her own coverage universe but also relative to peer 
companies and assess these themes going back over 
multiple years. Conversations with GIR analysts that 
started as an inquiry about the use of alternative data 
in some cases highlighted much lower hanging fruit, 
where a more systematized approach could create 
scalability that allowed the analysts to consider var-
ious scenarios that could not have been achieved 
manually.

https://www.cfainstitute.org/-/media/documents/survey/AI-Pioneers-in-Investment-Management.pdf
https://www.cfainstitute.org/-/media/documents/survey/AI-Pioneers-in-Investment-Management.pdf
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While asking for a return on the AI investment is absolutely 
the right thing to do, the hurdles to justify the effort seem 
somewhat unfair relative to how budgets for traditional 
data sources and traditional data analysis (for which the 
costs can also add up) are determined. Trying to identify 
appropriate key performance indicators for an AI effort has 
therefore started to make people question their broader 
data efforts, wondering whether they are extracting suf-
ficient return on investment across the entire data spec-
trum. This evolution is healthy and may lead to a more level 
playing field for AI-focused efforts.

Where Do I Start? It Is a 
Marathon, Not a Sprint
If you are embarking on your AI and alternative data journey 
in a setting with people who already have years of invest-
ment expertise, hiring one or two key people who have 
a data science background, have hands-on experience 
digging into data, and are genuinely interested in learning 
about and solving investment problems is a great starting 
point. Teaming up those key hires with one or two analysts 
who are interested in leveraging and analyzing more data, 
have a solid use case that has staying power, and under-
stand that you need to iterate to get to a useful result 
should allow you to hit the ground running. Investment 
analysts who have ideas for new data to incorporate into 
their process and appreciate that properly analyzing those 
data may require trial and error are great candidates to 
start an organization on its path to AI and alternative data 
adoption and success. The initial use cases ideally do not 
depend on a complicated dataset that may take too long to 
bring on board.

Having senior sponsorship from the start is important. 
Those senior sponsors do not need to have familiarity with 
AI and alternative data themselves but need to have an 
appreciation that these approaches can be additive to the 
investment process. Their role is to provide the trailblaz-
ers some room and cover to experiment and iterate, while 
keeping them accountable by staying on top of (especially 
the initial) use cases. Once there are specific, tangible out-
comes, others can get their heads around what it means 
in practice to lever alternative data and more sophisticated 
techniques. At that point, momentum to expand across the 
organization is created and scaling up the effort across 
geographies, analyst teams, and asset classes becomes a 
realistic next step. 

Another question that is raised in this context is whether 
the AI and alternative data effort should be centralized or 
embedded in each team. As the need for having a dedi-
cated data science expert in each team was de minimis, 
GIR went for a centralized effort that can be thought of as 
an extension of its research teams across the globe and 
across asset classes. Its centralized approach has given 

GIR the benefit of connecting the dots across use cases 
coming from different research teams.

Other teams in an investment organization can provide 
leverage, and it is good practice to make people in engi-
neering, legal, and compliance departments aware of 
the AI and alternative data effort from Day 1, even if they 
do not have an immediate role to play. As the use cases 
expand, questions about data storage, firewalls, terms and 
conditions, and licensing rights for use of specific data 
sources will increase, which will require proper attention 
from those experts. In addition, as your use cases become 
more sophisticated, you may consider building additional 
functionality in house as opposed to relying on a third party 
to do some of the processing for you (i.e., build versus buy), 
which may require a dedicated engineering focus. GIR’s own 
journey has reflected that evolution, where the first years 
of experience with embedding AI and alternative data pro-
vided a wealth of information on what approaches do and, 
more importantly, do not work and how they can fit into the 
workflow of a research analyst. GIR’s Data Strategy team 
had to revisit a number of initial approaches on how to 
best evolve its data ecosystem but is now in a much better 
position to partner further with colleagues in engineering to 
make it a reality, as opposed to having the initial enthusi-
asm translate into engineering effort spent on building sys-
tems that may not have been properly thought through.

Conclusion
The impact of AI and alternative data on investment 
research is evolutionary, not revolutionary. Goldman Sachs 
looks at nonstructured, alternative, and big data as other 
components in the spectrum of data that may be relevant 
to its research process. It looks at AI, ML, and NLP as other 
components in the spectrum of analytical tools to make 
sense of the data. With the lines between traditional and 
alternative data becoming blurred and an increasingly 
ambiguous definition of what AI does or does not include, 
GIR does not draw artificial boundaries across these spec-
trums and therefore does not assess the value of AI and 
alternative data differently from its other data and analyti-
cal efforts. It draws from the types of data and the types of 
analyses as needed, often mixing unstructured data with 
traditional data and having more sophisticated approaches 
live side by side with more intuitive approaches. Subject 
matter and data science experts team up as appropriate, 
while ensuring they draw the best of man plus machine 
to minimize algorithmic and data biases. As this space 
matures further and the lines blur even more, Goldman 
Sachs expects that this integrated, iterative, and collabo-
rative approach will continue to bear fruit for its investment 
research use cases. And because it also expects that AI 
and alternative data will simply become part and parcel of 
the research process, there may be a day when the labels 
“big” and “alternative” are no longer relevant!
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3. DATA SCIENCE FOR ACTIVE AND LONG-TERM 
FUNDAMENTAL INVESTING
Kai Cui, PhD
Managing Director, Head of Equity Data Science, Neuberger Berman

Jonathan Shahrabani
Managing Director, Chief Operating Officer – Global Research Strategies, Neuberger Berman

Large-scale alternative data (alt-data) and data science 
are improving the investment techniques in the industry. 
Active asset managers with a long-term orientation par-
ticularly, given their long-term mindset and the resulting 
lower portfolio turnover, have differentiating opportuni-
ties to innovate in data science and big data. Therefore, 
sustainable, long-shelf-life data insights are as import-
ant as (if not more important than) short-term insights 
related to potential mispricing and time-sensitive 
advantages.

Long-term fundamental investors in active asset 
management strategies started embracing alt-data and 
data science two or three years later than their hedge fund 
peers. For example, data science has been an increasingly 
important capability of Neuberger Berman since 2017 
across sectors, geographies, and asset classes.

Alt-data allow asset managers to “bear-hug” companies by 
enhancing our understanding of their operations and orga-
nizations independent of and incremental to information 

Data Science Integration at Neuberger Berman
At Neuberger Berman, the data science function is 
deeply integrated and provides significant added 
value in its practices managing global equity man-
dates for institutional, retail, and high-net-worth 
investors. Idea generation is the combined effort 
and responsibility of both fundamental industry 
analysts and data scientists.

Given the vast alternative data footprint that is 
continuously being created by companies, the 
teams use research templates and data science 
processes—including data science–integrated 
scalable financial models, data modeling, and ana-
lytical tools—extensively to systematically capture 
and synthesize this information.

The design and construction of these research 
templates are a collaboration between both 
fundamental industry analysts and data scientists. 
These templates capture the key performance 
indicators (KPIs) for a given industry and key thesis 
metrics and data insights for a given company 
that are material to its longer-term earnings power. 
Simultaneously, with curated long-term fundamental 
support, we actively construct and track a spectrum 
of alt-data metrics to glean a comprehensive view 

of the company’s real-time operational metrics 
and/or risk toward our long-term growth targets.

Both fundamental industry analysts and data 
scientists review these data on at least a weekly 
basis and discuss any notable upward or down-
ward movements.

If a template is not relevant for a given industry or 
company (or a deep dive is required), fundamental 
industry analysts and data scientists partner on a 
custom analysis. As can be expected, custom anal-
yses require extensive collaboration between both 
parties. For certain industries, such as health care, 
the background of the fundamental industry analyst 
takes on increasing importance because of the vast 
differences between subsectors (biotechnology, 
pharmaceuticals, life sciences, etc.).

During year-end reviews, fundamental industry 
analysts and data scientists are evaluated based 
on their contributions from multiple perspectives, 
including, but not limited to, investment perfor-
mance, engagement, and strategy innovations 
and development. These are important drivers of 
incentives for both parties.
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gleaned from financial statements and management 
interactions. The depth and breadth of alternative data, 
if analyzed and integrated correctly, can generate invalu-
able insights with a longer shelf life for long-term alpha 
generation.

The Operating Model and 
Evolution of Data Science 
Integration
There is no single best operating model for data science 
integration that fits all active asset managers. Data science 
must be customized to fit into each firm’s own unique 
culture, organizational structure, core value proposition, 
strategic prioritization, and even innovative budgeting 
methods.

Evolution of the Data 
Science Organization
In this section, we discuss the decision of whether to 
use a centralized or decentralized data science team and 
how to evaluate the return on investment of data science 
initiatives.

To Centralize or Not

While a highly centralized data science team may enjoy 
more autonomy than decentralized teams and serve well 
as an innovation hub or research lab, if detached from 
investment decision making and business opportunities, 
it tends to fail to drive sustainable innovation that can be 
integrated or provide incremental value to the core invest-
ment platform.30 In contrast, a completely decentralized 
data science team can prove economically inefficient and 
risk duplication of effort, especially when data scientists 
are less experienced.

The level of data science integration among strategies 
varies, and we can distinguish three stages of data science 
integration/engagement with investment teams even within 
the same firm: (1) engagement to establish credibility, (2) 
active and deep integration for investment evaluation, and 
(3) data science as part of the core investment strategy.

The level of centralization depends on the stage of data 
science integration. Generally, the data science team is 
centralized in the early to intermediate stages of develop-
ment. When best practices are established and experience 
grows, experienced data scientists can make a more direct 
impact as part of an investment team’s decision-making 

30For more discussion on centralization, see CFA Institute, “T-Shaped Teams: Organizing to Adopt AI and Big Data at Investment Firms”  
(2021, p. 23). www.cfainstitute.org/-/media/documents/article/industry-research/t-shaped-teams.pdf.

processes. The transition will happen faster as more data 
scientists and analysts are developed with training in both 
data science and fundamental investing.

Evaluating Data Science Initiatives’ 
Return on Investment

While it is important that all data science initiatives start 
with illustrating incremental added value and establishing 
good engagement relationships with fundamental industry 
analysts, rapid “time to market” and the early establishment 
of credibility and process momentum on the road to subse-
quent stages are essential as well. Notably and importantly, 
the KPIs for team performance and return on investment 
(ROI) assessment could be different when planning and pri-
oritizing engagement/integration efforts in different stages 
of data science and investment process integration.

For example, driving data source coverage, metrics and 
insights coverage, and the number of high-quality use 
cases are essential in the early stage to establish cred-
ibility. When coming to more active and deeper integra-
tion, data science teams need to align performance KPIs 
with the measurement of investment decision-making 
impacts and contribution to investment performance. 
Furthermore, if data science is part of a core investment 
strategy and/or is driving innovative investment solu-
tions for investors and prospects, additional KPIs and ROI 
measurements on contribution to strategic development, 
growth in assets under management, and client engage-
ment are also important, in addition to the contribution to 
investment performance. Over time, data science efforts 
evolve with the growing capabilities of team members 
and the closer partnership with fundamental industry 
analysts, and we continue to enable the data science 
team for long-term success focusing on deeper integra-
tion into both investment decision making and innovative 
investment solutions.

ROI assessment of data insights and data sources also 
needs to be customized to the investment styles of 
active asset managers while taking into account such 
factors as investment capacity, which is as important 
as investment performance for innovative data sci-
ence–integrated investment solutions. For example, alt-
data may have proven to generate incremental alpha in 
sector-focused, cross-sectional systematic strategies, 
but a data science platform supporting more diversified 
signals and types of strategies needs further devel-
opment to support diversified client demands, global 
exposure, and thus the larger-scale investment capacity 
requirement needed by a large global asset manager 
with a long-term orientation.

http://www.cfainstitute.org/-/media/documents/article/industry-research/t-shaped-teams.pdf
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Analysts with Training 
in Both Data Science 
and Investments
At the 1997 Worldwide Developer Conference, Steve Jobs 
was asked “to express in clear terms how, say, Java, in 
any of its incarnations, expresses the ideas embodied in 
OpenDoc.” His answer was to start with the key business 
question of how to best serve customers rather than 
“sitting down with engineers and figuring out what 
awesome technologies we have and how we are going to 
market that.”31

Data scientists often have similar questions for their 
fundamental investing counterparts, such as, Are the 
vast amounts of new metrics generated from new data 
sources and data science techniques fully understood 
and appreciated by fundamental investment professionals 
to realize their full potential? The correct answer is also 
similar: Data science endeavors should start with key 
investment questions rather than what data and metrics 
data scientists have already built and how to figure out use 
cases out of them.

A large portion of the data created daily proves of limited 
value to data scientists in evaluating investment oppor-
tunities. In contrast, we focus on data insights into key 
controversies and thesis metrics that allow us to have an 
informed and, often, differentiated view on a company’s 
earnings power relative to market expectations three to 
five years out.

To this end, data scientists on the team (including some 
with a prior background as fundamental industry analysts) 
have been trained internally for both data science and 
fundamental research skills.32 This training ensures data 
scientists have a strong knowledge to initiate meaningful 
discussions of investment use cases in multiple industries, 
as well as the key drivers of earnings power. Inevitably, 
some mistakes have been made along the way, but they 
created opportunities for data scientists and fundamen-
tal analysts to learn to speak the same language and 
strengthen their bond.

Data scientists with a background and training in funda-
mental investing have a better chance of cutting through 
conflicting and noisy data. For example, a high number of 
open job listings for a given company’s salesforce provides 
a better indication of business momentum in some indus-
tries than in others. However, it can also mean employee 
retention is low and signal underlying issues for an 

31For a transcript and video of the remarks by Steve Jobs, see, e.g., Sebastiaan van der Lans, “Transcript: Steve Jobs at Apple’s WWDC 1997,” 
Sebastiaan van der Lans—On WordPress, Blockchain, Timestamps & Trust (blog, 3 January 2020). https://sebastiaans.blog/steve-jobs- 
wwdc-1997/.

32For a related discussion on the evolution of investment and data science function integrations, see CFA Institute, “T-Shaped Teams.”

organization. Understanding the nuances of each company 
and its peers (competitive positioning, geographic foot-
print, merger and acquisition strategy, etc.) is critical.

Armed with their alternative data findings, data scientists 
and fundamental industry analysts are able to engage 
company executives on a deeper level, provide additional 
insights into the inner workings of the company under 
study, and enrich our insights into an investee organization. 
It is our experience that analyzing data in isolation and 
without context can lead to erroneous conclusions.

Longer-Term Earnings Power 
Insights vs. Shorter-Term 
Operational Monitoring
Integrating alt-data into the fundamental investing frame-
work allows investment teams to have an informed and, 
often, differentiated view on a portfolio company’s earnings 
power three to five years out. At the same time, actively 
constructing and tracking a spectrum of short-term alt-
data metrics to develop a comprehensive view of real-time 
operational metrics and/or risk toward our longer-term 
growth targets are equally important.

For example, many investment management firms have 
access to some form of credit card data. Indeed, there are 
many third-party providers in the marketplace that scrub 
this type of data for subscribers and provide an easily 
digestible format in real time. On the surface, credit card 
data in raw form and slightly lagged delivery provide less 
of a timeliness advantage. However, these data may allow 
data scientists working with long-term investment teams 
to perform in-depth proprietary research that is better 
aligned with their core investment disciplines.

Although many large, publicly traded companies are heav-
ily researched and alt-data coverage is not universally 
and equally distributed, it is still possible, with balanced 
longer-term earning power insights and shorter-term oper-
ational metrics monitoring, to have a differentiated view 
about earnings power relative to market consensus. A few 
specific examples will help illustrate this point.

An Athleisure Brand

A working, fundamental thesis postulated that the oper-
ating margin of a leading athleisure brand was at an 
inflection point, driven by growth in the company’s digital 
offering. Presented with this thesis, the data science team 
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recommended a proprietary analysis breaking down the 
average selling price (ASP) between the company’s digital 
and brick-and-mortar transactions. The fundamental indus-
try analyst agreed with the data science team that such 
an analysis would be highly valuable, particularly because 
the management team of the company in question pro-
vided minimal disclosure regarding its digital offerings. The 
results of the analysis showed a significant premium for 
an extended period of time on digital transactions versus 
brick-and-mortar transactions.

Taking it one step further, the fundamental industry analyst 
later proposed tracking and monitoring the ASPs of the 
company under review versus a major competitor as further 
validation of the thesis. Indeed, the ASP premium achieved 
by the company in digital transactions over this major 
competitor was materially higher over a similar period of 
time. This analysis contributed to our portfolio management 
team’s initiation of an investment position in the stock, 
supported by our increasing confidence that the operating 
margins of the company could expand meaningfully above 
consensus expectations over the medium term and long 
term. At the same time, because the company was one of 
the best covered names by alt-data sources, an array of 
metrics was actively monitored to glean a comprehensive 
view of the company’s operations, including digital app 
engagement, consumer interests in various product lines, 
pricing power, and geographic new initiatives.

A Global Luxury Brand

A fundamental industry analyst began to lose conviction 
when recommending a well-known global luxury com-
pany because of the Chinese government’s emphasis on 
“common prosperity.” The growth of the luxury industry in 
recent years has been dominated by Chinese consumers. 
As a way to cut across the debate, given the analyst’s view 
that the impact of a government initiative might not be 
easily spotted in conventional data, the data science team 
captured multiple operational KPIs.

Although we did see a modest dip in some short-term data 
metrics, such as social media momentum, we performed 
an extensive analysis of the company’s customer base over 
a comprehensive period of time, which was more indica-
tive of the company’s ability to contribute to our long-term 
growth targets. Specifically, our analysis revealed that 
many months after the government’s “common prosperity” 

push, the company’s largest cohort of customers (female 
midlevel wage earners) increased their spending as a 
percentage of disposable income at this brand. Such an 
approach ultimately allowed our portfolio management 
teams to maintain ownership in the stock based on unobvi-
ous alt-data metrics that our data science team turned into 
an investible insight.

A Leading Asset Manager

A fundamental working thesis held that many investors 
were underestimating the growth of a new retail product 
offered by a leading asset manager. In addition to tracking 
regular asset flow data provided by the company, our fun-
damental industry analyst colleagues and the data science 
team developed an alternative method for tracking and 
monitoring traffic in the new product on the web portal of 
this specific retailer. This analysis contributed to our portfo-
lio management teams’ initiation of a position in the stock, 
bolstered by increased confidence in its earnings power 
and potential for upside growth.

Later, our ongoing tracking and monitoring of the data 
allowed our portfolio management team to play defense 
when necessary. Specifically, a sharp drop-off in web portal 
traffic observed by our data science team ultimately led to 
a more cautious outlook by our fundamental industry ana-
lyst and portfolio management teams. This, in turn, resulted 
in our portfolio management team’s reduction (and in some 
cases elimination) of its position in the stock.

Conclusion
Data science and alternative data can help provide insights 
and added value to a range of investment processes, strat-
egies, and portfolio management teams. However, there 
exists no single, self-evident methodology or road map to 
follow. Rather—and critically—distinct investment strate-
gies, investment horizons, and portfolio teams each require 
their own individual approaches to the use of data science 
and the range of alternative datasets they can leverage.

The winning formula, in our opinion, is a partnership-driven 
approach that brings together data scientists, fundamental 
analysts, and portfolio managers with value-added 
datasets specifically built to address the firm’s specific 
investment needs.


