
III. TRADING WITH MACHINE LEARNING
AND BIG DATA

HANDBOOK OF ARTIFICIAL INTELLIGENCE
AND BIG DATA APPLICATIONS IN
INVESTMENTS

This book can be found at cfainstitute.org/ai-and-big-data

http://cfainstitute.org/ai-and-big-data

Handbook of Artificial Intelligence and Big Data Applications in Investments

92 CFA Institute Research Foundation

7. MACHINE LEARNING AND BIG DATA TRADE
EXECUTION SUPPORT
Erin Stanton
Global Head of Analytics Client Support, Virtu Financial

Introduction
As a result of recent advances in computing power, data
abundance, and cloud services, asset managers are
increasingly eager to use artificial intelligence (AI) and
machine learning (ML) solutions to unearth meaningful
insights from their data. However, despite their willing-
ness and investment, many buy-side firms are struggling
to establish an efficient and programmatic way to do
ML-based analytics at scale. Why are these efforts failing
to meet expectations?

Making Sense of the Data
As asset managers push their competitive edge into the
digital sphere, AI/ML solutions are growing out of the neces-
sity for better and faster processes, calculated decisions,
and data-driven insights. In the TRADE’s October 2020 article
“Buy-Side Lags behind Sell-Side in Adoption of Machine
Learning and Artificial Intelligence,” a Refinitiv study found
that only 28% of buy-side firms were leveraging ML and AI
(Smith 2020). This lag was recently confirmed by a Q1 2022
Quant Strats survey of 100 hedge funds, asset managers,
and investment banks across the United States and Canada
that pegged regular use of machine learning in decision
making at 22% (Finadium 2022). Anecdotally, a different pic-
ture is emerging, one fueled by significant buy-side interest
and active ML skill building and development.

Like the chicken and egg paradox, the buy side needs
advanced technology and established efficient processes
to capture and store data in sufficient granularity and
requires ML expertise to help sift through the reams of
structured and unstructured data. Though buy-side traders
still consider sourcing liquidity their biggest challenge—one
that statistical algorithms cannot easily solve—they recog-
nize the advantages of ML-assisted approaches. Based on
our observations, data delay and capture capabilities are
improving and there is enthusiasm for putting existing data
to work. ML’s abilities to uncover patterns in large datasets
and surface correlations that humans cannot detect have
buy-side traders and portfolio managers learning about and
turning to open-source ML libraries, such as scikit-learn,
tools similar to those used by traditional data scientists.
In turn, these budding quasi-data scientists are developing
such ML-based solutions as trigger algorithms that can

help inform a direction to take when unforeseeable events
occur or ML-powered solutions that overcome limitations by
using data gathered from other industries.

In this chapter, five use cases detail real-life examples
of ML’s application in the analytics and trading spaces,
while noting both the effective combination of data and
ML-based techniques used to enrich the decision-support
processes and some of the current barriers facing buy-side
firms as the technology matures. Here is a synopsis:

• Use Case 1: Feature Importance. Designed to reduce
the number of inputs a trader needs to consider
when selecting the optimal trading strategy, feature
importance calculates a score or rank for each input
in a model. It is common for trading blotters to con-
tain dozens, if not hundreds, of different security and
market metrics, so using an ML-based approach can
help traders focus on the most meaningful factors.

• Use Cases 2 and 3: Transaction Cost Analysis (TCA).
Portfolio managers and traders use TCA to learn from
post-trade data and to improve future performance.
In searching for trends about which strategies work,
data are typically broken down by components, such
as the size of the order or the market cap of the stock.
In Use Cases 2 and 3, different ML-based approaches
help extract additional insights from existing trade
data to further enhance TCA analysis.

• Use Case 4: Normalized and Unbiased Algo Trading.
The automated, randomized testing performed by algo
wheels helps traders find the best trading algorithm
across a variety of brokers; it is like the A/B testing an
e-commerce site would run to find the best product.
Just like a retailer needs to ensure consistency of
service for its customers, a data analyst must be
aware that, aside from the testing component itself,
all testers receive the same experience. In com-
paring algo wheel orders, a trader must account
for the different order characteristics and market
characteristics that each broker receives. Traditional
market impact models are built statistically, but now,
based on the size and scope of available data, it is
possible to handicap brokers using ML-based models.

• Use Case 5: Trading Strategy Recommendation
Model. In Use Cases 1–4, traders had to select the
optimal trading strategy. In Use Case 5, an ML-based

© 2023 CFA Institute Research Foundation. All rights reserved.

Handbook of Artificial Intelligence and Big Data Applications in Investments

CFA Institute Research Foundation 93

trading strategy recommendation model is offered
with an option to override should the recommendation
not align with the trader’s human intuition and experi-
ence. Incidentally, when a trader chooses to override,
this too is captured and can be analyzed to better
enhance the model.

Not All Data Are Created
Equal
Computers cannot make decisions as humans do. Human
decisions are based on heuristics and cognitive biases
against a broad field of attention to fully comprehend an
event. The use of ML-based models depends heavily on
data, and more specifically on granular data, as well as on
the humans that build them. It is important to acknowl-
edge that all ML analyses begin with data, but not all
data are created equal. In addition to the variance in data
quality, humans also add variability via the multiple deci-
sions they make throughout the ML model construction
process.

Advanced models, such as neural networks, make such
firms as Google successful, but they are like black boxes; it
is hard to explain why they come up with the results they
do. In trading, this approach is not optimal. In accordance
with data science best practices, model builders should
consider the following questions carefully during and after
model construction. As a matter of transparency, their
responses should also be included for every model submit-
ted into production.

• What data were included versus excluded, and why?

• Assuming the data were available, what would
improve the model?

• What consistency checks and quality assurances
were performed on the input datasets?

• What features were included and excluded, and why?

• What model was chosen, and why?

Use Case 1: The Role of
Feature Importance in TCA
for Auto-Order Routing
Each ML-based model created is an experiment since they
fail as often as they succeed. Sometimes, one may be able
to make a model operational, but the predictive accuracy
is low or the model does not work owing to a technical
problem. Nevertheless, ML techniques are evolving,
reducing the amount of time spent on manual analysis.

1Jason Siegendorf, personal communication with author.

The feature importance approach is often where most buy-
side firms start their ML implementation journeys. When
evaluating the performance of a portfolio, a portfolio manager
typically performs an attribution analysis to determine which
stocks contributed positively and negatively. The output infor-
mation can be used to explain performance to an end client
and/or to predict the viability of future investment decisions.

The process of TCA is a data-driven way traders and portfolio
managers can benefit by reviewing past results. Historically,
TCA has primarily been observational, dissecting the changes
in trading costs into factors, such as liquidity, volatility, and
spread. Ideally, the trader may leverage the enhanced post-
trade information when execution planning and when demon-
strating or confirming execution quality/best execution.

Although observational TCA is less statistical, it has proven
to be an invaluable tool for bridging the consumer trust gap.
Experience has made clear that it is essential to prove to
your end audience how well their data and processes are
understood before they can be convinced to adopt emerging
technologies, such as AI and ML; TCA has been an effective
catalyst toward ML-based analytics. Usually, once a client
gains confidence in traditional TCA capabilities, their thinking
leads them to ask whether anything is missing. For Harris
Associates, their search led them to the feature importance
approach for auto-routing execution, according to Jason
Siegendorf, the firm’s head of trading analytics:

Harris Associates had previously set up a work-
flow within our execution management system
to auto-route or send a subset of trades directly
to a pre-defined algorithmic trading strategy,
bypassing the trading desk. This enabled cash
flows and other low risk orders to be traded very
consistently and without trader bias in broker
selection and allowed our traders to focus on the
orders that they can have the most impact on
by sourcing liquidity and deciding on the optimal
execution strategy. We know that order size is an
important consideration when deciding if an order
is auto-routing eligible, but we also wondered if
there might be other contributing factors we were
missing out on. Applying the feature importance
function confirmed our intuition and helped spot-
light other meaningful order characteristics we
typically pay less attention to.1

Typically, a human trader’s execution decision making
involves the synthesis and weighing of dozens of inputs
to make instant decisions regarding how to best execute
an order. However, brain processing studies show that
interactions are limited to three, sometimes four, inputs
(Cowan 2001). The feature importance approach assists
human traders by statistically confirming observational

Handbook of Artificial Intelligence and Big Data Applications in Investments

94 CFA Institute Research Foundation

TCA and human intuition by explaining subtle post-trade
transaction cost patterns that may have otherwise gone
undetected. It can also be used as a guide for pre-trade
and auto-routing strategies.

The recommended ML-based approach for this use case
was a supervised random forest model2 (feature impor-
tance is built in natively); however, some buy-side clients
may prefer the straightforward linear regression3 approach.
Most traders are already familiar with the linear regression
coefficients, which can be used to determine the direction
and impact of a specific feature.

The following steps taken in this use case can be imple-
mented for any ML-based model.

• Step 1: Cleansing and Normalizing Data

Any ML-based process must first identify the right data
for the intended objective and determine whether any
data normalization is required. Although not explored in
this article, most of a model builder’s time is spent on the
data—data cleansing, normalizing, and removing outliers
and blank values—in addition to selecting and normaliz-
ing features before they can be passed into the model.

• Step 2: Chunking (Breaking Down) Data into Subsets
for Easier Interpretation

The following examples illustrate how chunking
(breaking down) data into smaller subsets enhances
understanding:

■	 Have the drivers of trading costs changed over
time? Ideally, the data should be broken down into
time periods (e.g., month, quarter) and a separate
model should be run for each. When completed, the
model builder can compare the feature importance
for each distinct period and determine whether
drivers of costs have shifted or stayed the same.

■	 What are the cost drivers between two types of
order flow? A trader may want to know the differ-
ence in transaction costs between single-stock
versus program trading flow, so the data would
be chunked into two respective datasets and
modeled separately.

■	 Do transaction costs differ by fund type? To
understand the cost impacts on small-cap cap
growth and large-cap cap value, for instance,
a trader would need to segment the data into
relevant attribute datasets and then run a model
for each attribute to pinpoint the most important
drivers of the transaction costs.

2A random forest grows multiple decision trees that are merged for more accurate predictions. The reasoning behind these models is that
multiple uncorrelated models (i.e., individual decision trees) achieve much better performance as a group than individually.

3The simple linear regression forecasting method can be used to plot a trend line based on relationships between dependent and independent
variables. In linear regression analysis, changes in a dependent variable are shown on the y-axis and changes in the explanatory variable are
shown on the x-axis.

• Step 3: Data Labeling and Testing and Training
Datasets

As inputs, labeled datasets are required for the super-
vised model. Following the selection of which labeled
dataset(s) to use, it is necessary to further separate the
data into training and testing subsets. Model builders
must reserve a portion of the data for testing to deter-
mine how well the model predicts with data it has not
previously interacted with, also known as generalization.

• Step 4: Selecting the Model’s Features

When selecting the model’s inputs, avoid using a
‘kitchen sink’ approach that includes every possible
driver of transaction costs since this type of model
does not perform well with highly correlated inputs.
Several techniques exist to identify and remove the
highly correlated features; it is a step in the process.

• Step 5: Selecting the ML Model’s Library and Training
a Supervised Model

Among the open-source ML libraries, scikit-learn is
a popular option, and since the use case involved
predicting continuous trading costs rather than dis-
crete ones, the RandomForestRegressor was chosen.
Despite spending less time tweaking the model to
improve accuracy, its predictive power remains a sig-
nificant factor when analyzing the feature importance.

• Step 6: Selecting a Feature Importance Approach

Finally, the model builder must identify the most
influential inputs for model prediction. Here are a few
techniques:

■	 Default scikit-learn’s feature importance.
Informally looks at how much each feature is
used in each tree within the training forest.
Exhibit 1 shows an example output from the
scikit-learn feature importance module.

• Pros: Single command to retrieve and fast

• Cons: Can be biased to continuous features
and high-cardinality categorical features; can
only be run on the user’s training dataset

■	 Permutation feature importance. Shuffles a
feature to see how much the model changes its
prediction accuracy.

• Pros: Can be run on both testing and training
datasets

• Cons: More computationally expensive and
can overestimate the importance of cor-
related features

Handbook of Artificial Intelligence and Big Data Applications in Investments

CFA Institute Research Foundation 95

■	 Drop column feature importance. Manually
drop one feature and examine model prediction
accuracy.

• Pros: Highly intuitive and accurate

• Cons: Need to retrain the model each time,
which can be resource-intensive

■	 Feature importance computed with Shapley
additive explanation (SHAP) values. Uses the
SHAP values from game theory to estimate how
each feature contributes to the prediction.

• Pros: Provides more information through
decision and dependence plots and impact
directionality

• Cons: Can be computationally expensive and
requires a separate library

Use Case 2: Semisupervised
Learning to Cluster Similar
Orders Where Clear Tags
Are Missing
The lack of clear and consistent data tags is one of the big-
gest hurdles ML must overcome. Currently, vast amounts of
data are either untagged, in free-form text, or hard to inte-
grate into the core dataset. In this use case, unsupervised

and semisupervised approaches are explored for populating
tags where data are missing, and in the next use case, I
examine these approaches for parsing free-form text.

The objective for this use case is to determine the type of
commission rate when the data populating the commis-
sion-type tag are missing. The example is useful because it
illustrates that model builders might have to get creative in
how to use the data they have—solving the problem using
a different tack.

ML-based techniques can be applied more broadly to iden-
tify segments of orders that are similarly structured across
a range of partially or fully untagged attributes. Examples
include the following:

• In cases where the fund is not consistently tagged,
details such as the number of stocks, average market
cap, average momentum, and volatility can be used to
extrapolate the style of investment strategy.

• In cases where a trading desk discretionary tag is
not consistently tagged, details around the order
horizon, the type of algorithm used, the observed
transaction costs, and the existence of a limit price
can be used to extrapolate whether the buy-side
trading desk had full discretion over the trading strat-
egy of the order.

In contrast with the first use case, Use Case 2 has only a
small segment of clearly labeled data, so model builders

Exhibit 1. Selecting Feature Importance

Weight Feature

0.2904 ± 0.0302 tradeHorizon

01733 ± 0.0100 tradedValue Expected Results Sample

0.1663 ± 0.0131 historicalVolatility The trading horizon is the most important factor influencing
transaction costs, followed by traded value and historic volatility.
Traders can use this to explain transaction costs post-trade and
to inform them of the costs before placing an order in the market
(pre-trade).

0.1217 ± 0.0137 participationRate

0.0560 ± 0.0111 percentMDV

0.0523 ± 0.0094 spread

0.0310 ± 0.0042 marketCap

0.0230 ± 0.0041 sector

0.0064 ± 0.0053 securityType

0.0022 ± 0.0013 side

0 ± 0.0000 country

Source: Virtu Analytics.

Handbook of Artificial Intelligence and Big Data Applications in Investments

96 CFA Institute Research Foundation

could choose to implement an unsupervised or semisuper-
vised approach.4

As previously noted, ML model construction requires signif-
icant data preparation, and in Use Case 2, this involved the
parsing of the client–broker code as an extrapolated model
feature. While the broker tag itself differs from firm to firm,
many broker destinations indicate the category of commis-
sion paid—for instance, brokerA_HT and brokerA_LT—data
that were parsed and tagged as inputs for the model
(Exhibit 2).

If an unsupervised clustering approach is taken, then a
model needs to be selected that allows for both continuous
numerical information, such as the average commission
rate paid, and discrete categorical information, such as
the country the client traded in. Using a k-means algorithm
for the model’s purely numerical input and a k-modes
algorithm for the model’s purely categorical input is recom-
mended. The model builder may also opt for Zhexue Huang’s

4Semisupervised model learning involves a learning problem, as well as the algorithms created for the problem, that pertains to a small amount
of labeled examples and numerous unlabeled examples from which the model learns and makes predictions on new examples.

k-prototype clustering algorithm that combines both
approaches into one (Huang 1998).

When the model is complete, the model builder will have
an output cluster number that, in this example (Exhibit 3),
indicates whether the record represents an execution-only
or a non-execution-only commission rate.

The output cluster number can be used to report the execu-
tion-only commission rate; the use case goal was achieved.
Nevertheless, good data science practices require model
builders to review not only results but also the components
of the model. In so doing, the modeler found that the data-
set contained more labeled data than expected and re-ran
the model, this time using a semisupervised approach
(some labeled data and some unlabeled data).

In the semisupervised model approach, a small set of data
labels was used to train a supervised classification model,
and once trained, the model could be used to predict the

Illustrative Example of Using Semisupervised Learning
to Solve a Long-Running Data Tagging Issue
Any time data are sourced from multiple systems,
such as from multiple trading systems, data tagging
can become an issue. An example is that while some
trading platforms easily capture the type of commis-
sion rate paid with a trade, many do not. Buy-side
traders want to be able to compare their commission
rates to a large peer-based database to get a sense of
how much relative commission they are paying.

While not easily solvable with traditional observa-
tion-based analytics, semisupervised learning allows
for the training of a model that can learn off clearly
tagged examples and then predict the commission
type for trades that do not have clear tagging. The
buy-side trader can now compare her execution-only
rate on an apples-to-apples basis to other investment
managers.

Exhibit 2. Broker Code Commission Parsed and Data Tagged

Client ID
(categorical)

Country
(categorical)

Turnover
(numerical)

Avg. Commission
Rate (cps)

(numerical)

Broker
Destination Code

(categorical)
Parsed Broker Code Tag

(categorical)

1 USA $1,000,000 1 brokerA_LT Execution Only

1 USA $2,000,000 4 brokerA_HT Not Execution Only

2 USA $1,000,000 1.5 brokerabcd Unknown

Source: Virtu Analytics.

Handbook of Artificial Intelligence and Big Data Applications in Investments

CFA Institute Research Foundation 97

unlabeled portion of the dataset. Even though the model
builder ultimately opted to use the semisupervised method,
the fully unsupervised and semisupervised approaches
yielded similar average execution-only rates. In ML-based
data analysis, reproducibility is an important aspect of
confirming that techniques and approaches are working
as intended.

Use Case 3: Natural
Language Processing to
Parse Free-Form Text Fields
into Data Tags
Frequently, the parsing of inputs is from free-form text,
such as a portfolio manager’s note to a buy-side trader
that might include trading instructions and constraints
that can impact a trade’s outcome. The following are some
examples:

• Target this order for the close

• Part of a prog, trade cash neutral

• Avoid impact, trade in line with volume

A human reader can easily parse this text into a few simple
tags; however, to programmatically extract information
from free-form text fields, model builders must be familiar
with natural language processing (NLP). The goal in Use
Case 3 is to automate what a human can understand on a
more systematic and consistent basis, as follows:

• Close

• Program trade

• Go along

Useful in post-trade learning, parsed tags can provide
a data-driven perspective on how the portfolio manag-
er’s instruction may have affected trading costs, and in

execution planning, they can help the trader better under-
stand what strategies work best based on the instructions
received. NLP can be used against any free-form text field
to help parse out additional information, even though our
examination in this use case focuses on the portfolio
manager’s instructions.

Google’s Bidirectional Encoder Representations from
Transformers (BERT) model was chosen because it has the
capability of enhanced context understanding because
of its process of evaluating text in both left-to-right and
right-to-left directions. As with other models, BERT is open
source and has the advantage of being pretrained on an
enormous dataset. Since its initial launch, BERT has been
adapted into sub-language versions, such as FinBERT,
which handles financial documents, and LEGAL-BERT,
which handles legal documents. The Virtu Analytics team
performs most of its NLP work on an internal JupyterHub,
where they have installed the necessary libraries and built
their codebase; however, AWS SageMaker and Comprehend
can be much quicker to set up. BERT also offers the advan-
tage of being fine-tuned using a relatively small number of
labeled examples, which, due to the size requirements, can
be labeled by humans manually.

At this point, BERT runs like any other supervised method,
producing tagged predictions alongside probability.

Use Case 4: Transaction
Cost/Market Impact
Prediction
Leveraging market impact models, TCA determines
the quality of the execution versus the expected cost.
Currently, various transaction cost outcome prediction
approaches are based on a combination of order char-
acteristics, stock-level market data inputs, and a model
calibration process that incorporates the results of realized
trades.

Exhibit 3. Model Cluster Output Number Using Parsed and Data Tagged
Broker Commission Code

Client ID
(categorical)

Country
(categorical)

Turnover
(numerical)

Avg. Commission
Rate (cps)

(numerical)

Broker Destination
Code

(categorical)

Parsed Broker
Code Tag

(categorical)

Model
Output

Cluster #

1 USA $1,000,000 1 brokerA_LT Execution Only 1

1 USA $2,000,000 4 brokerA_HT Not Execution Only 2

2 USA $1,000,000 1.5 brokerabcd Unknown 1

Source: Virtu Analytics.

Handbook of Artificial Intelligence and Big Data Applications in Investments

98 CFA Institute Research Foundation

Building an ML-based model off observed transaction costs
can be challenging because of the data noise in a typical
dataset and the lack of data labeling that hampers the
parsing of text. Exhibit 4 illustrates the problem with data
noise in the use case’s dataset.

The training example in Exhibit 4 shows different observed
transaction cost labels despite nearly identical inputs for
ticker, trade time, shares, volatility, and spread, which can
result in model confusion. Data analysts are advised that
there may be other factors not captured in traditional TCA
analysis that can affect a trade, which can similarly con-
fuse a model. Attempts to estimate market impact using
Virtu’s Global Peer database in its entirety were unsuccess-
ful; however, when filtering off more homogeneous order
flows, such as those from the algo wheel, useful estimates
were obtained.

An algo wheel provides automated, randomized routing to
brokers according to user-defined allocations. When using
an algo wheel, the trader selects the desired algo strategy
and sends the order. Then, the algo wheel’s broker-alloca-
tion engine routes the order to a user-defined set of nor-
malized algo strategies. Post-trade data are accumulated
over time (on average, 300 orders per broker represent a
useful dataset) to assess performance and guide future
broker allocations.

An ML-based market impact prediction model can be
applied to cross-firm flows (giving insight into how brokers
perform relative to each other) or to firm-specific flows to
account for specific nuances in their proprietary invest-
ment processes. Enrico Cacciatore, senior quantitative
trader and head of market structure and trading analytics
at Voya Financial, explains why this capability matters:
“Performance is what determines which brokers receive
more flow on our algo wheel, and we need to account for
differences in order difficulty across the flow that each of
our counterparties receives. The Machine Learning Market
Impact model we subscribe to allows us to handicap our
brokers while at the same time giving us a sense of what
transaction costs competing firms are achieving.”5

5Enrico Cacciatore, personal communication with author.

The random forest model was chosen to accomplish the
use case goal for market impact prediction. Several other
model types were tested, including forest-related varia-
tions, such as gradient-boosted trees, but a simple random
forest implementation performed the best in this case.
We have found that random forest models provide high
accuracy for our use cases and off our specific dataset,
which includes both numeric and categorical data, and the
results are also quite easy to explain and troubleshoot.

Every model builder is advised to incorporate a third-party
review as an integral step in the construction process.
Non-model builders with knowledge of the dataset, ML, and
subject matter should review the approach with the model
builder(s)—with all participants being strongly encouraged
to challenge the model based on the data, features, and
model type selected.

Use case in point, during our Transaction Cost Impact
Algo Wheel Model peer review, someone raised a potential
endogeneity issue related to a few features that included
order horizons. Even though the order horizon greatly
improved the model’s prediction accuracy, it is directly
controlled by the broker. The purpose of a peer review is
for users to have a common understanding of the model’s
objective so they can assess whether it performed as
intended. In this use case, the peer review team agreed
that the broker had too much control over the order horizon
and the feature was removed from the model.

Use Case 5: Trading Strategy
Recommendation
In Use Cases 1–4, ML-based approaches provided data-
driven trade information but left optimal trading strategy
selection to the buy-side trader. In this use case, the
review closes with an ML-based trading strategy rec-
ommendation model. Even though this example invokes
greater risk—a suboptimal trading strategy can result in
a higher-cost trade—the reader should now have a better
understanding of ML-based alternative approaches to

Exhibit 4. Precleansed Data Noise in a Typical Dataset

Training
Example Ticker Trade Time Shares Volatility Spread

Observed Transaction
Cost Outcome

(implementation shortfall)

1 AAPL 3/1/2022 10:00 a.m. 1,000 9 bps 10 bps 5 bps

2 AAPL 3/1/2022 10:05 a.m. 1,100 8 bps 9 bps 20 bps

Source: Virtu Analytics.

Handbook of Artificial Intelligence and Big Data Applications in Investments

CFA Institute Research Foundation 99

segment order flow when data tags are unclear, how to
parse free-form text from an ML perspective, and how
market impact estimates can be constructed solely from
observed trades.

This use case’s data represented all algorithmic trades
captured across all brokers from Virtu’s execution manage-
ment system. Leveraging the model at a firm-specific level
is possible; however, data requirements are more stringent
as accuracy is emphasized when a recommendation is
being submitted.

The feature importance approach was applied to iden-
tify the key data inputs for the model, which include the
following:

• Order attributes, such as the ticker, side, sector, size,
and market cap

• Stock clustering and NLP techniques, used to fill in
the gaps, such as whether a limit price was set and
whether an urgency setting was used for the algo
trade

• Real-time market condition metrics, such as relative
volume, volatility, and spread compared with historical
distributions

Random forest models were then trained using historical
data for each of the algorithm trading styles available to a

buy-side trader, including implementation shortfall, VWAP,
liquidity seeking, and dark.

Finally, the buy-side trader receives a prediction of the
transaction cost outcome based on all available algorithms.
Though it is possible to display only the winning, low-cost
strategy, it is also useful to show the cost and variability of
outputs across all strategies as part of the trader’s imple-
mentation display. Separately, some trades will be marked
as not-low-touch-eligible because of the high strategy esti-
mates provided across all models.

Conclusion
Although the use cases presented in this chapter are suc-
cessful, many experiments do not perform as expected. To
provide some balance, an example of a failed experiment
would be the effort to build a stock clustering model that
could inform a trading strategy. Though the experiment was
successful in clustering stocks by characteristics, it could
not tie them to a model that consistently informed how to
trade them.

ML-based model building can sometimes be creative,
should be collaborative, and is always iterative.

References
Cowan, Nelson. 2001. “The Magical Number 4 in Short-Term
Memory: A Reconsideration of Mental Storage Capacity.”
Behavioral and Brain Sciences 24 (1): 87–114. www.
researchgate.net/publication/11830840_The_Magical_
Number_4_in_Short-Term_Memory_A_Reconsideration_of_
Mental_Storage_Capacity.

Finadium. 2022. “Quant Strats Survey Shows ML Adoption
Lagging, Third Party Spend Drops, Quantum Computing
Tops Future Tech” (17 March). https://finadium.com/quant-
strats-survey-shows-ml-adoption-lagging-third-party-
spend-drops-quantum-computing-tops-future-tech.

Huang, Zhexue. 1998. “Extensions to the k-Means
Algorithm for Clustering Large Data Sets with Categorical
Values.” Data Mining and Knowledge Discovery 2:
283–304. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.15.4028&rep=rep1&type=pdf.

Smith, Annabel. 2020. “Buy-Side Lags behind Sell-Side in
Adoption of Machine Learning and Artificial Intelligence.”
The TRADE (27 October). www.thetradenews.com/buy-side-
lags-behind-sell-side-in-adoption-of-machine-learning-
and-artificial-intelligence/.

Effects of Training
with Biased Data
While not discussed previously, if the
datasets used to train machine learn-
ing models contain biased data, then
the model predictions will most likely
be biased as well. If most of the training
data for the volume-weighted average
price (VWAP) strategy represented large-
cap stocks, which inherently have lower
transaction costs, this strategy could look
incorrectly cheap when compared to other
models that have a more representative
training sample. There are several ways
to deal with bias, and it is an important
consideration for any model that is used
directly in the trading space.

www.researchgate.net/publication/11830840_The_Magical_Number_4_in_Short-Term_Memory_A_Reconsideration_of_Mental_Storage_Capacity
www.researchgate.net/publication/11830840_The_Magical_Number_4_in_Short-Term_Memory_A_Reconsideration_of_Mental_Storage_Capacity
www.researchgate.net/publication/11830840_The_Magical_Number_4_in_Short-Term_Memory_A_Reconsideration_of_Mental_Storage_Capacity
www.researchgate.net/publication/11830840_The_Magical_Number_4_in_Short-Term_Memory_A_Reconsideration_of_Mental_Storage_Capacity
https://finadium.com/quant-strats-survey-shows-ml-adoption-lagging-third-party-spend-drops-quantum-computing-tops-future-tech
https://finadium.com/quant-strats-survey-shows-ml-adoption-lagging-third-party-spend-drops-quantum-computing-tops-future-tech
https://finadium.com/quant-strats-survey-shows-ml-adoption-lagging-third-party-spend-drops-quantum-computing-tops-future-tech
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4028&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4028&rep=rep1&type=pdf
http://www.thetradenews.com/buy-side-lags-behind-sell-side-in-adoption-of-machine-learning-and-artificial-intelligence/
http://www.thetradenews.com/buy-side-lags-behind-sell-side-in-adoption-of-machine-learning-and-artificial-intelligence/
http://www.thetradenews.com/buy-side-lags-behind-sell-side-in-adoption-of-machine-learning-and-artificial-intelligence/

Handbook of Artificial Intelligence and Big Data Applications in Investments

100 CFA Institute Research Foundation

8. MACHINE LEARNING FOR MICROSTRUCTURE
DATA-DRIVEN EXECUTION ALGORITHMS
Peer Nagy
ML Intern, Man Group

DPhil Student, Oxford-Man Institute, University of Oxford

James Powrie, PhD
Principal Quant, Man Group

Stefan Zohren, PhD
Principal Quant, Man Group

Faculty Member, Oxford-Man Institute, University of Oxford

Introduction
A central task in implementing any trading strategy is execut-
ing the trades required to reach a desired portfolio position.
Typically, larger trades are required to change positions for
funds with higher assets under management, and the larger
a trade is, the more impact it tends to have on market prices.
This impact can be measured as slippage (i.e., the difference
between a reference price before the start of the trade and
the prices at which trades are executed). To minimize this
slippage cost, which can lead to a significant performance
degradation over time, machine learning (ML) methods can
be deployed to improve execution algorithms in various ways.

An execution problem is usually framed as follows. The exe-
cution algorithm is presented with a block of shares to buy
or sell within a required time frame, which typically ranges
from seconds to hours. To minimize the adverse impact
of trades on the market price, this large order is split into
smaller slices that are then executed over the available time
horizon. The role of the algorithm is to choose an execution
schedule that reduces the slippage bill as much as pos-
sible. If the order was not split up this way and distributed
over time but instead was executed as a market order at the
moment the trade instruction was presented, then large buy
orders would push prices up, sell orders would push them
down, or there might simply not be enough liquidity in the
market at the time to complete the trade, leading to a less
favorable slippage cost or an incomplete execution.

In any execution problem, there is a trade-off between the
price impact and the risk of the price moving unfavorably
over the execution horizon. If we are risk neutral and have
no information on the direction the price is likely to move or
on future trading activity, the optimal execution schedule
involves partitioning all trades into smaller slices spaced
evenly over the execution horizon. This strategy is referred
to as TWAP (time-weighted average price) execution, which
serves as a benchmark for more advanced execution

algorithms to surpass. Using methods from stochastic
optimal control, TWAP can even formally be shown to be
optimal under these assumptions, so it constitutes a valid
baseline (Almgren and Chriss 2000).

However, it might appear obvious that we can further improve
execution if we have useful predictions of where prices
might move in the short term. Another commonly used exe-
cution strategy makes use of information on trading volume,
or market turnover, because a higher volume allows larger
trades to be executed for the same amount of price impact.
This type of strategy targets execution of a block of shares
at the volume-weighted average price (VWAP) by splitting up
execution over time proportionately to the expected volume
profile. While expected volume is inherently a forward-looking
variable, it shows patterns depending on the time of day and
can be predicted reasonably accurately using ML models.
The mathematical finance literature also shows that VWAP
is an optimal execution strategy when volume information is
available under the assumptions of risk neutrality and perma-
nent market impact (Kato 2015; Cartea and Jaimungal 2016).
In practice, we can enhance our execution performance in
contrast to TWAP by adjusting trade sizes proportionately to
expected volume. Estimating trading volume can be as simple
as observing a volume profile by time of day or as complex as
using deep learning models with a plethora of market features.

One role for ML algorithms in execution is therefore to
compute forecasts of short-term price movements and
expected volume that an execution algorithm can use
to front- or back-load the execution schedule—in effect,
locally speeding up or slowing down trading activity. For
example, given a signal forecasting decreasing prices
over the next few seconds, the algorithm would place a
sell trade now rather than wait for the price to fall. This
supervised learning—or more specifically, regression
problem—has been approached using a variety of meth-
ods, ranging from statistical modeling to deep learning.
It is possible to apply advanced ML techniques, such as

Handbook of Artificial Intelligence and Big Data Applications in Investments

CFA Institute Research Foundation 101

Jamuna deep learning, only because of the abundance of
high-frequency data, which are essential for their training.

Predicting price movements directly is only one task of the
many that ML can be applied to. For example, ML can also be
used to forecast other relevant variables for optimizing the
execution problem, such as market spreads, available future
liquidity in the market, or volatility of the returns. Indeed, one
can even have reinforcement learning algorithms directly
choose concrete execution actions, such as sizing, timing,
and pricing of slices, to solve the execution problem.

Microstructure Data
and Analysis
Most electronic exchanges involved in the trading of cash
equities, futures, or options use limit order books (LOBs) to
match buy and sell orders using a price–time priority match-
ing mechanism. In this prioritization scheme, orders are first
matched by their price levels, with orders at the same price
on a first-come, first-served basis. Every limit order to buy
with a price lower than any sell order in the LOB is added to
the bid side of the LOB, where levels are ordered from best
(highest price and earliest arrival) to worst (lowest price and
latest arrival). Similarly, if an order to sell is posted at a price
higher than any order to buy in the LOB, it is added to the ask
side of the LOB. Together, the bid and ask levels of the LOB
constitute the visible supply and demand for any instrument
and any moment in time (see Exhibit 1). The bid level with
the highest price is called the best bid, and the ask level

with the lowest price is called the best ask. The difference
in price between the best ask and best bid is called the
spread. If a market order is placed to buy (sell), it is first exe-
cuted against the best price level of the ask (bid) side, then
executed in order of arrival time of the corresponding limit
order, and finally executed against the next level if the order
is larger than the number of shares available at the best
price. Rather than market orders, practitioners often use
limit orders that are targeted against the best bid or ask. A
refinement of this tactic is to use immediate-or-cancel (IOC)
orders, which are automatically canceled if they cannot be
filled at the limit price.

Given this order matching mechanism, LOBs are often
described as double-sided continuous auctions, since a
continuous order flow changes the book dynamically over
time. Limit orders that cannot be matched immediately at
the time of arrival, because either the bid is too low for a
buy order or the ask is too high for a sell order, enter the
book and provide liquidity to the market. Market orders,
IOCs, or executable limit orders—buy (sell) limit orders with
prices higher (lower) than the best ask (bid)—however, take
away liquidity from the market, do not enter the LOB, and
are executed immediately. In the case of executable limit
orders, we can also have a situation where part of the limit
order is executed, which thus removes liquidity, while a
remainder stays on the book and provides liquidity.

To train ML models for execution tasks, LOB data are required
in some form. These data can be represented at different
levels of granularity. For most tasks in this space, a uni-
variate price time series is insufficient, and at the least, a
dataset with best bid and ask prices and volumes over time
is required to learn useful relationships. Some ML models
even train on data including multiple or all levels of the LOB
to forecast variables of interest. Such datasets can be rep-
resented either as a stream of individual orders—so-called
market-by-order (MBO) data—or as a sequence of snapshots
of the state of the LOB over time. MBO data contain different
order types (limit, market, cancel, and modify), which allow
a dynamic reconstruction of the LOB in full fidelity. For mod-
eling purposes, however, time series of features of the LOB
state are usually more amenable to be used as model inputs.

As mentioned in the previous section, supervised ML tech-
niques can be fruitfully applied to several prediction targets
in the execution domain. Models that can predict future
values of these variables over even part of the execution
horizon can help reduce slippage. One such target is the
market spread, because lower spreads imply more favor-
able execution prices for marketable orders crossing the
spread. Similarly, high trading volume makes it more likely
that a passively placed limit order will be executed at each
time step. Conversely, forecasting return volatility can be
useful for gauging the risk of large price moves over the
execution horizon. In periods of high volatility, for example,
it might pay to front-load the execution schedule to limit
exposure to the downside risk of adverse price shocks.

Exhibit 1. Illustration of an LOB with
Five Bid and Ask Levels

Price

Depth (# of shares)

Spread = Ps – PbMid-price

Asks

Bids

Best ask price Ps

db

LSds

db

dbBest bid price Pb

Note: The arrival of a new limit sell order of size Ls at the best ask is
added to the book by increasing the depth at that level.

Handbook of Artificial Intelligence and Big Data Applications in Investments

102 CFA Institute Research Foundation

Over the short term, one of the best indicators of immediate
price moves in the LOB is the order flow imbalance (Cont,
Kukanov, and Stoikov 2014). The definition of the order flow
imbalance (OFI) is the order flow on the buy side: incoming
limit buy orders at the best bid, Lb, net of order cancella-
tions, Cb, and market orders, Mb, minus the opposing sell-
side flow, within a period of time:

() ().b b s s s bOFI L C M L C M= − − − − −

This measure captures an imbalance between demand and
supply in the market, which is an essential determinant
of the market price. A high positive order flow imbalance
indicates excessive buy pressure at current prices, thereby
making it more likely that prices will rise imminently.
Cont et al. (2014) describe an empirical linear relationship
between OFI and price changes.

A related LOB-derived measure of supply–demand imbal-
ance, which can be used as a predictive signal of short-
term price changes, is the order book imbalance (OBI):

.
b s

b s

d d
OBI

d d

−=
+

Here, db and ds are the depths of the best bid and best
ask, respectively (see Exhibit 1). The OBI calculates the
normalized difference between the depth (number of
available shares) on the buy side at the best bid, db, and
the number of shares posted on the sell side at the best
ask, ds. This measure is limited between −1 and 1, ranging
from a strong downward price pressure to a strong upward
price pressure.

The order book imbalance is also often used by practi-
tioners to calculate a micro-price, pmicro, which more closely
reflects the microstructure effects than the mid-price. The
micro-price simply weighs the bid and ask prices, pb and ps,
respectively, by the imbalance, I:

(1) ,micro s bP IP I P= + −

where

1
.

2

b

b s

d OBI
I

d d

+= =
+

ML-Based Predictive Signals
for Execution Algorithms
A classical approach in statistical modeling is to start out
with simple, perhaps linear, models and a small set of vari-
ables, or features, that are likely to have some predictive
power for the quantity of interest. Over the modeling pro-
cess, model complexity is gradually increased and features
are further engineered and refined to extract more infor-
mation from the raw data. Driven by the domination of the

ML literature by deep learning and artificial neural network
(ANN) models, most recent approaches, however, have
moved away from handcrafted feature engineering and
instead approached prediction problems using raw data
directly. This trend has also taken hold in financial ML and
quantitative trading.

A recent exception to this rule is the deep order flow imbal-
ance model (Kolm, Turiel, and Westray 2021), which uses
order flow imbalance, as described in the previous section,
to predict a vector of returns over multiple short-term hori-
zons. The authors show that extracting order flow features
from the top 10 levels of the order book is sufficient to
achieve state-of-the-art predictive performance with rela-
tively simple conventional neural network models, such as
LSTM (long short-term memory) networks, or combinations
of LSTMs with multilayer perceptrons (MLPs). This implies
that practitioners might be able to get away with simpler
models in some cases by performing an input data trans-
formation from raw data to order flows. These results con-
trast with those of the same simple neural network models
that instead use raw order book features, which cannot
achieve any predictive power on the same task, implying
that the data transformation is essential. However, another
result of this study is that linear models and simple MLP
feed-forward networks alone are not useful for forecasting
such short-term alpha signals.

Notwithstanding deep order flow imbalance models, the
trend in the current ML literature on forecasting short-term
price signals points in the direction of using raw order book
states directly, using more advanced ANN architectures to
automatically extract feature representations amenable to
forward return regression or classification tasks. One such
model is DeepLOB (Zhang, Zohren, and Roberts 2019a),
which uses a deep neural network architecture with con-
volutional layers and an inception module (Szegedy, Liu,
Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and
Rabinovich 2015) also based on convolutional layers.
Convolutional neural networks (CNNs) were originally devel-
oped for visual classification tasks, such as handwritten
digit recognition or classifying images based on their con-
tent. The start of the current popularity of CNNs came with
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and its
superior performance on the ImageNet challenge, a classi-
fication problem of a large database of images with more
than 1,000 prediction classes. Convolutional layers act as
local filters on an image, aggregating local information in
every special region. During learning, the weights of many
such filters are updated as the overall system learns to
recognize distinct features in the data, such as horizontal or
vertical lines, corners, and regions of similar contrast. LOBs
can be likened to images because they also contain local
information; for example, price and volume information at
each level of the book can be combined with adjacent levels
to automatically extract new features using convolutional

Handbook of Artificial Intelligence and Big Data Applications in Investments

CFA Institute Research Foundation 103

layers. Similarly, CNNs can learn local temporal information
by convolving order book states over the time dimension.

Building on this analogy between images and LOBs, the
state-of-the-art deep learning model DeepLOB (Zhang
et al. 2019a), which uses raw order book states directly as
inputs to the network, constitutes a new tool in the execu-
tion toolbox. This type of model currently provides the most
accurate short-term price signals, which can be used to
improve execution trajectories. To improve the robustness
of forecasts, DeepLOB can also be extended to perform
quantile regression on the forward return distribution
(Zhang, Zohren, and Roberts 2019b). To do this, the final
LSTM layer of the network is split into multiple separate
parallel parts for as many quantiles as should be forecast,
and each network branch uses a corresponding quantile
loss function. Quantile predictions can then be combined to
compute more robust point estimates and add a measure
of uncertainty and risk for the practitioner. Training separate
models for the bid and ask sides has the additional advan-
tage of producing estimates of the market spread, which
can help in deciding the prices at which the order should
be placed and whether the spread should be crossed.

To improve the planning of an execution schedule, a point-
in-time price forecast can be useful; ultimately, however,
a price path over the execution horizon would be more
beneficial for concrete planning. Using ideas from natural
language processing and machine translation, a sequence-
to-sequence model with an attention mechanism can be
used to achieve such multihorizon return forecasts using
LOB data (Zhang and Zohren 2021). To translate written text
from one language to another, the idea of the sequence-to-
sequence model (Sutskever, Vinyals, and Le 2014) is to use
an LSTM encoder to learn a representation of a sentence as
a fixed-length vector and then use a separate LSTM-based
decoder to again translate this vector representation into
the target language. Adapting this idea to predict return
trajectories, the model in Zhang and Zohren (2021) uses
the DeepLOB network (Zhang et al. 2019a) as an encoder,
while an attention mechanism (Vaswani, Shazeer, Parmar,
Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin 2017)
allows using selected hidden states of the encoder layers
in the decoding step, producing the forecast time series.
This way, the model drastically improves forecasting perfor-
mance over longer time horizons as forecasts sequentially
build on each other in an autoregressive fashion.

Because deep learning models benefit from large amounts
of data, in the extreme case, models could even be trained
on market-by-order messages directly. Given that deep
order flow imbalance models already showed the advan-
tage of this more stationary data source, using all the raw
data in a deep learning framework is a logical next step.

From Integrating Predictive
Signals into Execution
Algorithms to Automatically
Learning Policies Using
Reinforcement Learning
An execution strategy in an LOB market can be viewed as
essentially two dimensional. One dimension is how very
large order volumes are sliced up over time, while the
other dimension describes the prices at which slices are
placed in the order book. A simple TWAP strategy might, for
instance, split a large order uniformly over time and always
place marketable limit orders by crossing the spread (see
Exhibit 2). This would imply, however, that half the spread
is lost with every trade relative to the mid-price, incurring
slippage costs even if the mid-price stays constant over the
entire execution time. In contrast, placing trades passively
by using limit orders at the near touch (i.e., without crossing
the spread) has the opposite effect of earning half a spread
whenever a marketable order is placed in the opposing
direction. The downside of passive orders is that execution
is uncertain and depends on other market participants’
order flow and future price moves. Thus, if one had a direc-
tional signal of future prices, it would be sensible to deviate
from the simple TWAP strategy. For example, if the execution
task is to sell a block of shares, a favorable price signal
might indicate that the mid-price is expected to rise; hence,
a slice of the order could be placed more passively deeper in
the book (at a higher price), anticipating that a price swing

Exhibit 2. Simple TWAP Strategy

Time

TW
AP Ta

rg
et T

ra
jecto

ry

Traded Volume

Tt

Note: This exhibit shows an illustration of an execution schedule
with a linear TWAP target trajectory and executed discrete slices
as blocks over time around the target trajectory.

Handbook of Artificial Intelligence and Big Data Applications in Investments

104 CFA Institute Research Foundation

could complete the trade. If price forecasts point downward,
however, a market order could still make use of the higher
price by executing a slice before the move happens.

Using a combination of ML models, we can thus engineer
a complete execution strategy. An example algorithm
might work as follows. Volatility forecasts, obtained using
any method from historical averaging over generalized
autoregressive conditional heteroskedasticity (GARCH)
models to deep learning, can be used to schedule either
the time allowed for an execution ticket or the amount of
front-loading over a fixed time horizon by controlling how
execution slice sizes decrease over time. Using ML fore-
casts of trade volume, we can further modulate execution
schedules by proportionately changing future slice sizes
with expected volume forecasts. Predicted price paths can
then be used to fine-tune the strategy by varying place-
ment levels (prices) dynamically. Should we expect a favor-
able price move, we would place a passive limit order in the
book at the first level—or even deeper into the book if the
expected price move is sufficiently large. Such a strategy
could be refined in various ways—for example, by using a
probabilistic level placement to increase the probability
of passive placements with more favorable price moves
and wider spread forecasts. A probabilistic strategy also
has the benefit of being less predictable by other market
participants, who might want to exploit the effect that
large orders have in moving the market.

Another ML approach encompassing the execution prob-
lem uses reinforcement learning (RL) algorithms to plan
the execution trajectory. RL—and especially deep RL using
deep neural networks—has been tremendously successful
in solving complex problems, from learning to play games
(Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra,
and Riedmiller 2013) to predicting three-dimensional pro-
tein structures from genomic data (Jumper, Evans, Pritzel,
Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates,
Žídek, Potapenko, et al. 2021). In the execution context,
Ning, Lin, and Jaimungal (2021) describe a good example
using deep RL for optimal execution problems using double
Q-learning (Hasselt 2010), employing a modern algorithm
previously used to train autonomous agents to play Atari
games at a superhuman level from raw pixel input.

On a theoretical level, the execution problem can be
framed as a partially observable Markov decision process
(POMDP), which can be amenable to being solved using RL
algorithms. The RL learning paradigm works analogously
to biological learning processes in animals and humans.
The agent, our execution algorithm, interacts with a market
environment in state s, which describes all information
necessary to characterize the current state of the market,
by performing an action, a, thereby transitioning the state
to s' = T(s,a). The environment state is further assumed to

satisfy the Markov property, which means that past states
do not add any further relevant information for the future.
The agent, however, perceives not the entire state of the
world but only an observation, o’ = obs(s’), and hence does
usually not know the underlying state exactly. In addition
to the new observation o’ at each step, the learner also
receives a reward signal, r. Based on the reward signal, the
RL algorithm learns over time which sequence of actions
leads to the highest expected cumulative rewards.

Observational features for the RL algorithm might include
various data from the LOB, including such handcrafted fea-
tures as order flow imbalance and order book imbalance,
or even specific model predictions, such as future price
paths, spreads, or volatility. In the extreme case, using
deep RL can help one even learn policies directly from raw
order book data. Rewards in this scenario are usually based
on incurred slippage during training.

A difficulty in real-world RL applications is that training the
algorithm necessarily must be done in a simulated envi-
ronment. The most basic kind of “simulator” simply uses
historical market prices. This approach limits the action
space to timing market orders, because past prices alone
cannot determine whether a limit order would have been
executed or not. Another shortcoming of relying solely on
historical prices for simulation is that trades do not gener-
ate any market impact, because neither do they take away
liquidity in the book nor can they cause any other market
participant to react to the trade. To alleviate the latter prob-
lem, simulation environments are sometimes enhanced
with stochastic models of price impact to represent more
realistic costs of aggressive trading. Another approach to
help with the former problem of handling limit orders is to
model the environment as a complete market replay using
market-by-order data. This way, new market or even limit
orders can be injected into the historical order flow. This
approach accurately handles how the order would have
been executed at the time.

However, this alone does not solve the problem of coun-
terfactual behavior by other agents. For example, if one of
our orders is executed, it might imply that someone else’s
order was not executed. They then might have placed
another order at a different price; however, this is not repre-
sented in the historical data. One approach to handle these
counterfactual scenarios is agent-based modeling, which
represents individual traders explicitly in a simulation.
These simulated agents follow their own trading strategies
and can react to changes in the market caused by our
execution algorithm, as well as to actions and reactions of
other agents. Capturing realistic trading behavior remains
a challenging task, and building realistic LOB models is the
subject of active research.

Handbook of Artificial Intelligence and Big Data Applications in Investments

CFA Institute Research Foundation 105

Conclusion
How large trades are optimally executed depends on the
details of a market’s microstructure environment. We have
described price–time priority LOB markets, because this is
the most common market design at major exchanges trad-
ing cash equities, futures, and options. Limit order books
thus provide a wealth of high-frequency data that can be
used for developing data-driven execution algorithms using
ML methods. LOB data can be used to engineer informative
features for the prediction of a range of relevant variables:
spreads, trade volume, volatility, and even short-term price
movements (fast alpha signals). Separate ML models, each
predicting a different variable, can then be combined into a
sophisticated execution algorithm that plans an execution
trajectory in both the volume and placement level (price)
dimension.

The trend in ML research more generally points in the
direction of using growing computer resources to further
automate feature extraction from raw data instead of
relying on handcrafted features. The DeepLOB model from
Zhang et al. (2019a) and further models building on it are
good examples demonstrating that this trend also holds in
finance and particularly for trade execution. Given expan-
sive LOB datasets and current computer power, deep learn-
ing models are already outperforming simpler models in
many tasks, such as generating fast alpha signals. Taking
trade automation a step further, RL offers an appealing
framework to reduce slippage costs by letting an execution
algorithm learn to take optimal actions directly. Actions can
be defined on varying levels of abstraction—from choosing
parameters in an existing execution algorithm dynamically
to placing trades outright. The research outlook in ML for
execution shows a path toward more complete end-to-end
execution systems using more advanced deep learning
and (deep) RL algorithms and architectures, improving
predictive performance while maintaining critical issues,
such as model robustness.

References
Almgren, Robert, and Neil Chriss. 2000. “Optimal Execution
of Portfolio Transactions.” Journal of Risk 3 (2): 5–39.

Cartea, Álvaro, and Sebastian Jaimungal. 2016. “A Closed-
Form Execution Strategy to Target Volume Weighted
Average Price.” SIAM Journal on Financial Mathematics
7 (1): 760–85.

Cont, Rama, Arseniy Kukanov, and Sasha Stoikov. 2014.
“The Price Impact of Order Book Events.” Journal of Financial
Econometrics 12 (1): 47–88.

Hasselt, Hado. 2010. “Double Q-Learning.” In Advances in
Neural Information Processing Systems 23 (NIPS 2010),

edited by J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta. https://papers.nips.cc/paper/2010/
hash/091d584fced301b442654dd8c23b3fc9-Abstract.
html.

Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov,
O. Ronneberger, K. Tunyasuvunakool, R. Bates,
A. Žídek, A. Potapenko, et al. 2021. “Highly Accurate Protein
Structure Prediction with AlphaFold.” Nature 596: 583–89.

Kato, Takashi. 2015. “VWAP Execution as an Optimal
Strategy.” JSIAM Letters 7: 33–36.

Kolm, Petter, Jeremy Turiel, and Nicholas Westray. 2021.
“Deep Order Flow Imbalance: Extracting Alpha at Multiple
Horizons from the Limit Order Book.” Working paper
(5 August). Available at https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=3900141.

Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012.
“ImageNet Classification with Deep Convolutional
Neural Networks.” Advances in Neural Information
Processing Systems 25 (NIPS 2012), edited by F. Pereira,
C. J. Burges, L. Bottou, and K. Q. Weinberger. https://
papers.nips.cc/paper/2012/hash/c399862d3b9d6b-
76c8436e924a68c45b-Abstract.html.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller. 2013. “Playing Atari with Deep
Reinforcement Learning.” NIPS Deep Learning Workshop
2013. Cornell University, arXiv:1312.5602 (19 December).
https://arxiv.org/abs/1312.5602.

Ning, Brian, Franco Ho Ting Lin, and Sebastian Jaimungal.
2021. “Double Deep Q-Learning for Optimal Execution.”
Applied Mathematical Finance 28 (4): 361–80.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014.
“Sequence to Sequence Learning with Neural Networks.”
Advances in Neural Information Processing Systems 27
(NIPS 2014), edited by Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K.Q. Weinberger. https://papers.nips.
cc/paper/2014/hash/a14ac55a4f27472c5d894ec-
1c3c743d2-Abstract.html.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. 2015.
“Going Deeper with Convolutions.” Proceedings of the
2015 IEEE Conference on Computer Vision and Pattern
Recognition.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. 2017. “Attention Is
All You Need.” Advances in Neural Information Processing
Systems 30 (NIPS 2017), edited by I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett. https://papers.nips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

https://doi.org/10.21314/JOR.2001.041/
https://doi.org/10.21314/JOR.2001.041/
https://doi.org/10.1137/16M1058406
https://doi.org/10.1137/16M1058406
https://doi.org/10.1137/16M1058406
https://doi.org/10.1137/16M1058406
https://doi.org/10.1093/jjfinec/nbt003
https://doi.org/10.1093/jjfinec/nbt003
https://doi.org/10.1093/jjfinec/nbt003
https://papers.nips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://papers.nips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://papers.nips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.14495/jsiaml.7.33
https://doi.org/10.14495/jsiaml.7.33
https://doi.org/10.2139/ssrn.3900141
https://doi.org/10.2139/ssrn.3900141
https://doi.org/10.2139/ssrn.3900141
https://doi.org/10.2139/ssrn.3900141
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3900141
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3900141
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://arxiv.org/abs/1312.5602
https://doi.org/10.1080/1350486X.2022.2077783
https://doi.org/10.1080/1350486X.2022.2077783
https://doi.org/10.1080/1350486X.2022.2077783
https://papers.nips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://papers.nips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://papers.nips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Handbook of Artificial Intelligence and Big Data Applications in Investments

106 CFA Institute Research Foundation

Zhang, Zihao, Stefan Zohren, and Stephen Roberts. 2019a.
“DeepLOB: Deep Convolutional Neural Networks for Limit
Order Books.” IEEE Transactions on Signal Processing
67 (11): 3001–12.

Zhang, Zihao, Stefan Zohren, and Stephen Roberts. 2019b.
“Extending Deep Learning Models for Limit Order Books to
Quantile Regression.” Time Series Workshop of the 36th
International Conference on Machine Learning. Cornell
University, arXiv:1906.04404 (11 June). https://arxiv.org/
abs/1906.04404.

Zhang, Zihao, and Stefan Zohren. 2021. “Multi-Horizon
Forecasting for Limit Order Books: Novel Deep Learning
Approaches and Hardware Acceleration Using Intelligent
Processing Units.” Cornell University, arXiv:2105.10430
(27 August). https://arxiv.org/abs/2105.10430.

https://doi.org/10.1109/TSP.2019.2907260
https://doi.org/10.1109/TSP.2019.2907260
https://doi.org/10.1109/TSP.2019.2907260
https://doi.org/10.1109/TSP.2019.2907260
https://arxiv.org/abs/1906.04404
https://arxiv.org/abs/1906.04404
https://arxiv.org/abs/2105.10430

