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Foreword 

Ever since the seminal work of Harry M. Markowitz (1952), the identification 
and measurement of investment risk have been hotly debated. Markowitz 
constructed a mean-variance model to demonstrate how to quantify both the 
risk and return of an asset or a portfolio of assets. The Markowitz model reveals 
that, in an efficient marketplace, higher returns can be accomplished only by 
accepting greater risks. Consequently, one of the most widely accepted 
financial principles is the tradeoff between risk and return. 

Although the concept of investment risk is universally recognized, the 
appropriate measure of risk remains controversial. Financial researchers 
generally agree that specific (nonsystematic) risks, such as those pertaining 
only to individual companies, tend to cancel out in well-diversified portfolios. 
Because systematic risk is nondiversifiable, however, it cannot be eliminated. 
The first theory to measure systematic risk was the capital asset pricing model 
(CAPM) for which William F. Sharpe (1964) shared the 1990 Nobel Memorial 
Prize in Economic Sciences. The CAPM postulates that a single type of risk, 
known as market risk, affects expected security returns. Only by exposing a 
well-diversified portfolio to higher market risk can an investor expect to achieve 
a higher rate of return. 

Under the CAPM, market risk is defined as the variability of an asset's rate 
of return relative to that of the overall market as measured by some market 
index such as the S&P 500. Beta, the coefficient of the independent variable 
(the market's rate of return) in an ordinary least squares regression equation to 
explain the dependent variable (a security's rate of return), measures a 
security's relative amount of systematic (market) risk. A beta equal to 1.0 
indicates risk equivalent to that of the overall market, whereas a beta less than 
1.0 denotes lower-than-market risk and a beta exceeding 1.0 indicates greater- 
than-market risk. 

The arbitrage pricing theory (APT), first presented by Stephen A. Ross 
(1976), was the next major asset pricing model to appear. Also focusing on 
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systematic risk, the APT recognizes that several different broad risk sources 
may combine to influence security returns. The intuitive appeal of the APT 
results from its recognition that the interaction of several macroeconomic 
factors such as inflation, interest rates, and business activity affects rates of 
return. The statistical process of factor analysis is employed to quantify the 
broad risk factors and to estimate individual securities' degree of exposure to 
these factors. A security effectively has a sensitivity to each systematic risk 
factor. A series of beta coefficients are estimated to measure the sensitivity to 
the respective factor risks for a particular security. Unlike the CAPM, 
however, the individual factors, although precisely quantified, are not specifi- 
cally associated with readily identifiable variables. Although considerable dis- 
cussion continues about the number and the identification of these broad 
factors, the APT nevertheless provides investment managers with a valuable 
risk-management tool. 

Factor models, the focus of this monograph, have existed for many years. 
Even before the introduction of the popular CAPM and APT, Markowitz (1959) 
proposed the use of a single-factor model to explain security returns. Some- 
times referred to as index models, factor models often rely on the use of factor 
analysis to identlfy factors that influence security returns. 

A good portfolio manager, whether explicitly or implicitly, evaluates the 
impact of a series of broad factors on the performances of various securities. In 
this sense, a reliable factor model provides a valuable tool to assist portfolio 
managers with the identification of pervasive factors that affect large members 
of securities. According to a factor model, the return-generating process for a 
security is driven by the presence of the various common factors and the 
security's unique sensitivities to each factor (factor loadings). The common 
factors may be readily identifiable fundamental factors such as price-earnings 
ratio, size, yield, and growth. Factor models can be used to decompose 
portfolio risk according to common factor exposure and to evaluate how much 
of a portfolio's return was attributable to each common factor exposure. 
Consequently, factor models offer a useful extension of the CAPM and the APT 
because they advance our understanding about how key factors influence 
portfolio risk and return. 

The CAPM is clear about the source of risk (the market) but suffers because 
no practical measure of the market exists. The APT causes difficulties because 
it does not identlfy the number of important factors or define them. Financial 
researchers and investment managers undoubtedly agree that only a few 
important factors explain an overwhelming degree of investment risk and 
return. Therefore, the appeal of factor models that define these factors 
becomes apparent. 



Foreword 

Sharpe (1984) effectively summarizes why investment professionals should 
pay heed to factor models: 

While the relative importance of various actors changes over time, 
as do the preferences of investors, we need not completely 
abandon a valuable framework within which we can approach 
investment decisions methodically. We have developed a useful 
set of tools and should certainly continue to develop them. 
Meanwhile, we can use the tools we have, as long as we use them 
intelligently, cautiously, and humbly. 

In this monograph, prominent academic and professional researchers of 
factor models unite to present a practitioner's guide to factor models. In the first 
article, Edwin Burmeister (Duke University), Richard Roll (University of 
California, Los Angeles), and Stephen Ross (Yale University) offer "A Practi- 
tioner's Guide to Arbitrage Pricing Theory." The authors not only explain the 
basics and the equations of APT but also discuss the macroeconomic forces that 
are the underlying sources of risk and how these factors combine to influence 
rates of return. Importantly, they present several ways for investment 
professionals to use APT effectively. 

In the second article, Edwin J. Elton and Martin J. Gruber, both of New York 
University, present "Multi-Index Models Using Simultaneous Estimation of All 
Parameters." Beginning with an explanation of a single-factor model, the 
authors next discuss multi-index models. They point out that the familiar 
single-factor model provides a useful framework within which to compare 
multi-index models. Their article examines methodology for simultaneously 
estimating the indexes and sensitivities in a multi-index model. In addition, the 
authors carefully test factor models, thus providing guidance with respect to the 
reliability and usefulness of these models. 

In the third article, Richard C. Grinold and Ronald N. Kahn, both of BARRA, 
address "Multiple-Factor Models for Portfolio Risk." They present a practical 
application of factor models to predict and control investment risk. Using a 
widely recognized multiple-factor risk model developed at BARRA, Grinold and 
Kahn emphasize the importance of identifying key fundamental factors that are 
relatively easy for investment professionals to use. They stress the use of 
factors that represent the recognized key investment attributes-volatility, 
momentum, size, liquidity, growth, value, earnings volatility, and financial 
leverage-and present specific measures of each. Thus, they advance the 
factor model literature by moving from quantitative, but unspecified, factors to 
readily identifiable fundamental characteristics. 

As a result of the availability of substantial amounts of data and the increasing 
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complexity of the investment decision-making process, the use of quantitative 
models now has heightened prominence in investment management. Factor 
models provide a useful extension of existing asset pricing models and allow 
managers to decompose portfolios into sensitivities to broad factors. This 
approach provides invaluable information about the attributes that influence 
portfolio returns, thus allowing managers to explain these returns. 

Although the mathematics of factor models may be complex, the underlying 
concept is intuitively apparent. This series of articles explains factor models in 
ways that investment practitioners can understand and use. The Research 
Foundation of the Institute of Chartered Financial Analysts is pleased to sponsor 
"A Practitioner's Guide to Factor Models." It is our hope and belief that these 
articles will further the understanding and use of these valuable concepts. 

John W. Peavy 111, CFA 

xii 



A Practitioner's Guide to 
Arbitrage Pricing Theory 

Edwin Burmeister 
Duke University 
Richard Roll 
University of California, Los Angeles 
Stephen A. Ross 
Yale University 

A fundamental principle of finance is the trade-off between risk and return. 
Unless a portfolio manager possesses special information, one portfolio can be 
expected to outperform another only if it is riskier in some appropriate sense. 
The crucial question is: "What is the appropriate measure of risk?" 

Many attributes might be related to an asset's risk, including market 
capitalization (size), dividend yield, growth, price-earnings ratio (PIE), and so 
on. Use of these traditional descriptors, however, presents at least three 
problems: 

1. Most are based on accounting data, and such data are generated by rules 
that may differ sigmficantly across firms. 

2. Even if all firms used the same accounting rules, reporting dates differ, so 
constructing time-synchronized interfirm comparisons is difficult. 

3. Most importantly, no rigorous theory tells us how traditional accounting 
variables should be related to an appropriate measure of risk for computing the 
risk-return trade-off. Even if historical empirical relationships can be uncov- 
ered, without the foundation of a rigorous theory, one must be concerned that 
any historical correlation might be spurious and subject to sudden and material 
change. 
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Currently, only two theories provide a rigorous foundation for computing the 
trade-off between risk and return: the capital asset pricing model (CAPM) and 
the arbitrage pricing theory (APT). 

The CAPM, for which William F. Sharpe shared the 1990 Nobel Memorial 
Prize in Economic Sciences, predicts that only one type of nondiversifiable risk 
influences expected security returns, and that single type of risk is "market 
risk."l In 1976, a little more than a decade after the CAPM was proposed, 
Stephen A. Ross invented the APT. The APT is more general than the CAPM 
in accepting a variety of different risk sources. This accords with the intuition 
that, for example, interest rates, inflation, and business activity have important 
impacts on stock return volatility. 

Although some theoretical formulations of the APT can be more intellectu- 
ally demanding than the CAPM, the intuitively appealing basics behind the APT 
are easy to understand. Moreover, the APT provides a portfolio manager with 
a variety of new and easily implemented tools to control risks and to enhance 
portfolio performance. 

In the remainder of this paper, we will explain APT basics and the equations 
of the APT. We will also discuss macroeconomic forces that are the underlying 
sources of risk. We will then illustrate some risk exposure profiles and the 
resulting APT-based risk-return trade-offs, and we will show how these 
fundamental risks contribute to the expected and unexpected components of 
realized return. Finally, we will discuss several uses of the APT that every 
practitioner could easily apply. 

The APT Basics 
The CAPM and the APT agree that, although many different firm-specific 

forces can influence the return on any individual stock, these idiosyncratic 
effects tend to cancel out in large and well-diversified portfolios. This cancella- 
tion is called the principle of diversification, and it has a long history in the field 
of insurance. An insurance company has no way of knowing whether any 
particular individual will become sick or will be involved in an accident, but the 
company is able to predict its losses accurately on a large pool of such risks. 

More precisely, if rm(t) is the return (in time period t) on a market index, such as the 
S&P 500, the CAPM measure of the riskiness for asset i with return r,(t) is equal to that asset's 
CAPM beta defined by Pi = cov[r,(t), rm(t)]lvar[rm(t )I. 

The CAPM is equivalent to the statement that the market index is itself mean-variance efficient 
in the sense of providing maximum average return for a given level of volatility. The index used 
to implement the CAPM is implicitly assumed to be an effective proxy for the entire market of 
assets. 



An insurance company is not entirely free of risk, however, simply because 
it insures a large number of individuals. For example, natural disasters or 
changes in health care can have major influences on insurance losses by 
simultaneously affecting many claimants. Similarly, large, well-diversified port- 
folios are not risk free, because common economic forces pervasively influence 
all stock returns and are not eliminated by diversification. In the APT, these 
common forces are called systematic or pervasive risks. 

According to the CAPM, systematic risk depends only upon exposure to the 
overall market, usually proxied by a broad stock market index, such as the S&P 
500. This exposure is measured by the CAPM beta, as defined in Footnote 1. 
Other things equal, a beta greater (less) than 1.0 indicates greater (less) risk 
relative to swings in the market index.2 

The APT takes the view that systematic risk need not be measured in only 
one way. Although the APT is completely general and does not specify exactly 
what the systematic risks are, or even how many such risks exist, academic and 
commercial research suggests that several primary sources of risk consistently 
impact stock returns. These risks arise from unanticipated changes in investor 
confidence, interest rates, inflation, real business activity, and a market index. 

Every stock and portfolio has exposures (or betas) with respect to each of 
these systematic risks. The pattern of economic betas for a stock or portfolio 
is called its risk exposure profile. Risk exposures are rewarded in the market 
with additional expected return, and thus the risk exposure profile determines 
the volatility and performance of a well-diversified portfolio. The profile also 
indicates how a stock or portfolio will perform under different economic 
conditions. For example, if real business activity is greater than anticipated, 
stocks with a high exposure to business activity, such as retail stores, will do 
relatively better than those with low exposures to business activity, such as 
utility companies. 

Most importantly, an investment manager can control the risk exposure 
profile of a managed portfolio. Managers with different traditional styles, such as 
small-capitalization growth managers and large-capitalization value managers, 
have differing inherent risk exposure profiles. For this reason, a traditional 
manager's risk exposure profile is congruent to a particular APT style. 

Given any particular APT style (or risk exposure profile), the difference 
between a manager's expected return and his or her actual performance is 
attributable to the selection of individual stocks that perform better or worse 

Of course, "other things equal" can only be expected to hold on average over many time 
periods. 
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than a priori expectations. This extraordinary performance defines ex post APT 
selection. 

APT Equations 
The APT follows from two basic postulates: 

Postulate 1. In every time period, the difference between the actual 
(realized) return and the expected return for any asset is equal to the sum, over 
all risk factors, of the risk exposure (the beta for that risk factor) multiplied by 
the realization (the actual end-of-period value) for that risk factor, plus an 
asset-specific (idiosyncratic) error term. 

This postulate is expressed by equation (1): 

where 

ri(t) = the total return on asset i (capital gains plus dividends) realized at the 
end of period t, 

E[ri(t)] = the expected return, at the beginning of period t, 
p,j = the risk exposure or beta of asset i to risk factor j for j = 1, . . . , K, 

fi(t) = the value of the end-of-period realization for the jth risk factor, j = 
1, . . . , K, and 

~ ~ ( t )  = the value of the end-of-period asset-specific (idiosyncratic) shock. 

It is assumed that the expectations, at the beginning of the period, for all of the 
factor realizations and for the asset-specific shock are zero; that is, 

It is also assumed that the asset-specific shock is uncorrelated with the factor 
realizations; that is, 

cov[ei(t), fi(t)] = 0 for all j = 1, . . . , K. 

Finally, all of the factor realizations and the asset-specific shocks are assumed 
to be uncorrelated across time: 

cov[fi(t), fi(tl)] = COV[E;(~), E i(t')] = 0 
for all j = 1, . . . , K and for all t # t'. 

The above conditions are summarized by saying that asset returns are 
generated by a linear factor model. Note that the risk factors themselves may 
be correlated ( ia t ion and interest rates, for example), as may the asset- 



specific shocks for different stocks (as would be the case, for example, if some 
unusual event influenced all of the firms in a particular industry). 

Postulate 2. Pure arbitrage profits are impossible. Because of compe- 
tition in financial markets, an investor cannot earn a positive expected rate of 
return on any combination of assets without undertaking some risk and without 
making some net investment of funds. 

Postulate 2 is, in fact, an appealing equilibrium concept that has far-ranging 
implications for broad areas of financial economics well beyond the determina- 
tion of asset prices. It is hard to imagine any model of financial behavior that fails 
to conclude that pure arbitrage profits tend to zero. This generality brings many 
advantages. The APT is free of restrictive assumptions on preferences or 
probability distributions, and it provides a rigorous logical foundation for the 
trade-off between expected returns and risks. 

Given Postulates 1 and 2, the main APT theorem is that there exist K + 1 
numbers Po, P,, . . . , P,, not all zero, such that the expected return on the ith 
asset is approximately equal to Po plus the sum over j of Pii times P,; that is, 

Although equation (2) holds only approximately, with additional assumptions, 
it can be proved that it holds exactly (see, e.g., Chen and Ingersoll1983). More 
importantly, even without any additional assumptions, it has been proved that 
the approximation in equation (2) is sufficiently accurate that any error can be 
ignored in practical applications (see, e. g., Dybvig 1983). Thus the approxima- 
tion symbol, =, can be replaced by an equal sign: 

Here, Pj is the price of risk, or the risk premium for the jth risk factor. Via 
equation (3), these Pi's determine the risk-return trade-off.3 

Imagine a portfolio that is perfectly diversified (i.e., one for which ep(t) = 0) 
and with no factor exposures (Ppi = 0 for all j = 1, . . . , K); such a portfolio has 
zero risk, and from equation (3) its expected return is Po. Thus, Po must be the 
risk-free rate of return. Reasoning similarly, the risk premium for the jth risk 

An equivalent interpretation of equation (3) uses an analogy to the familiar relationship that 
"quantity x price = value." Thus, if we think of Pii as the quantity of type-j risk in the ith asset 
and Pj as the price of type-j risk, then the product is the value of the contribution of type-j 
risk to the expected return of the ith asset. If we let V,? denote this value, then it follows from 
equation (3) that the sum of all the values is equal to the expected excess return (the expected 
return in excess of the risk-free rate) for the ith asset; that is, E[r,(t)] - Po = V,, + . . . + V,. 
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factor, Pi, is the return, in excess of the risk-free rate, earned on an asset that 
has one unit of risk exposure to the jth risk factor (Pii = 1) and zero risk 
exposures to all of the other factors (Pi, = 0 for all h Z j). 

The full APT is obtained by substituting equation (3) into equation (I), which 
after rearranging terms yields: 

It is at this level of the determination of expected returns that the CAPM and 
the APT differ. In the CAPM, the expected excess return for an asset is equal 
to that asset's CAPM beta times the expected excess return on a market index, 
even for multifactor versions of the standard CAPM. For such a multifactor 
CAPM to be true, the APT risk premiums-the Pis-must satisfy certain 
restrictions. In statistical tests, these CAPM restrictions have repeatedly been 
rejected in favor of the APT. 

A portfolio manager controls a portfolio's betas-the portfolio's risk expo- 
sure profile-by stock selection. Note that as the risk exposure to a particular 
factor is, for example, increased, the expected return for that portfolio is also 
increased (assuming that this risk factor commands a positive risk premium). 
Thus, risk exposures and hence the implied expected return for a portfolio are 
determined by a manager's stock selection. 

In many applications, data are observed monthly, and the 30-day Treasury 
bill rate is taken as a proxy for risk-free rate; that is, Po in equation (4) is 
replaced by TB(t), the 30-day Treasury bill rate known to investors at the 
beginning of month t. Then, for a model with N assets (i = 1, . . . , N )  and a 
sample period of T time periods (t = 1, . . . , T), the data are the asset returns, 
ri(t), the Treasury bill rates, TB(t), and the factor realizations, fi(t). From these 
data, the statistical estimation problem is to obtain numerical values for the N 
Pis and the (N x K)Pii)s. Discussion of this econometric problem is beyond the 
scope of this paper, but the bibliography lists further readings that cover the 
topic in detail.4 

Macroeconomic Forces Impacting Stock Returns 
Taking the time period to be one month and using the 30-day Treasury bill 

rate as a proxy for the risk-free rate of return, the APT model, equation (4), 
becomes: 

See, for example, Brown and Weinstein (1983); McElroy, Burmeister, and Wall (1985); 
Chen, Roll, and Ross (1986); Burmeister and McElroy (1988); and McElroy and Burmeister 
(1988). 



From h s  point, there are three alternative approaches to estimating an APT 
model: 

1. The risk factors f,(t), f,(t), . . . , fK(t) can be computed using statistical 
techniques such as factor analysis or principal components. 

2. K different well-diversified portfolios can substitute for the factors (see 
Appendix B). 

3. Economic theory and knowledge of financial markets can be used to 
specify K risk factors that can be measured from available macroeconomic and 
financial data. 

Each of these approaches has its merits and is appropriate for certain types 
of analysis. In particular, the first approach is useful for determining the number 
of relevant risk factors, or the numerical value of K. Many empirical studies 
have indicated that K = 5 is adequate for explaining stock returns. 

The estimates extracted using factor analysis or principal components have 
an undesirable property, however, that renders them difficult to interpret; this 
problem arises because, by the nature of the technique, the estimated factors 
are nonunique linear combinations of more fundamental underlying economic 
forces. Even when these linear combinations can be given an economic 
interpretation, they change over time so that, for example, Factor 3 for one 
sample period is not necessarily the same combination-in fact, it is almost 
certainly different-as the combination that was Factor 3 in a different sample 
period. 

The second approach can lead to insights, especially if the portfolios 
represent different strategies that are feasible for an investor to pursue at low 
cost. For example, if K were equal to 2, one might use small- and large- 
capitalization portfolios to substitute for the factors. 

The advantage of the third approach is that it provides an intuitively 
appealing set of factors that admit economic interpretation of the risk exposures 
(the p i s )  and the risk premiums (the Pis). From a purely statistical view, this 
approach also has the advantage of using economic information in addition to 
stock returns, whereas the first two approaches use "stock returns to explain 
stock returns." This additional information (about inflation, for example) will, in 
general, lead to statistical estimates with better properties, but of course, 
insofar as the economic variables are measured with errors, these advantages 
are diminished. 

Selecting an appropriate set of macroeconomic factors involves almost as 
much art as it does science, and by now, it is a highly developed art. The 
practitioner requires factors that are easy to interpret, are robust over time, 
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and explain as much as possible of the variation in stock returns. Extensive 
research work has established that one set of five factors meeting these criteria 
is the following: 

f,(t): Confidence risk. Confidence risk is the unanticipated changes in 
investors' willingness to undertake relatively risky investments. It is measured 
as the difference between the rate of return on relatively risky corporate bonds 
and the rate of return on government bonds, both with 20-year maturities, 
adjusted so that the mean of the difference is zero over a long historical sample 
period. In any month when the return on corporate bonds exceeds the return 
on government bonds by more than the long-run average, this measure of 
confidence risk is positive Cf, > 0). The intuition is that a positive return 
difference reflects increased investor confidence because the required yield on 
risky corporate bonds has fallen relative to safe government bonds. Stocks that 
are positively exposed to this risk (P, > 0) then will rise in price. Most equities 
do have a positive exposure to confidence risk, and small stocks generally have 
greater exposure than large stocks. 

f2(t): Time horizon risk. T i e  horizon risk is the unanticipated changes 
in investors' desired time to payouts. It is measured as the difference between 
the return on 20-year government bonds and 30-day Treasury bills, again 
adjusted to be mean-zero over a long historical sample period. A positive 
realization of time horizon risk V2 > 0) means that the price of long-term bonds 
has risen relative to the 30-day Treasury bill price. This is a signal that investors 
require less compensation for holding investments with relatively longer times 
to payouts. The price of stocks that are positively exposed to time horizon risk 
(pi2 > 0) will rise to appropriately decrease their yields. Growth stocks benefit 
more than income stocks when this occurs. 

f3(t): Injation risk. Inflation risk is a combination of the unexpected 
components of short- and long-run inflation rates. Expected future inflation 
rates are computed at the beginning of each period from available information: 
historical inflation rates, interest rates, and other economic variables that 
influence inflation. For any month, inflation risk is the unexpected surprise that 
is computed at the end of the month-the difference between the actual inflation 
for that month and what had been expected at the beginning of the month. 
Because most stocks have negative exposures to inflation risk (pis < 0), a 
positive inflation surprise Cf, > 0) causes a negative contribution to return, 
whereas a negative inflation surprise Cf, < 0), a deflation shock, contributes 
positively toward return. 

Luxury-product industries are most sensitive to inflation risk. Consumer 
demand for luxury goods plummets when real income is eroded through 
inflation, thus depressing profits for industries such as retailing, services, eating 



places, hotels and motels, and toys. In contrast, industries least sensitive to 
inflation risk tend to sell necessities, the demands for which are relatively 
insensitive to declines in real income. Examples include foods, cosmetics, tires 
and rubber goods, and shoes. Also, companies that have large asset holdings 
such as real estate or oil reserves may benefit from increased inflation. 

f4(t): Business cycle risk. Business cycle risk represents unanticipated 
changes in the level of real business activity. The expected values of a business 
activity index are computed both at the beginning and end of the month, using 
only information available at those times. Then, business cycle risk is calculated 
as the difference between the end-of-month value and the beginning-of-month 
value. A positive realization of business cycle risk (f, > 0) indicates that the 
expected growth rate of the economy, measured in constant dollars, has 
increased. Under such circumstances, firms that are more positively exposed to 
business cycle risk-for example, firms such as retail stores, which do well 
when business activity increases as the economy recovers from a recession- 
will outperform those such as utility companies that respond only weakly to 
increased levels in business activity. 

f,(t): Market-timing risk. Market-timing risk is computed as that part of 
the S&P 500 total return that is not explained by the first four macroeconomic 
risks and an intercept term. Many people find it useful to think of the APT as 
a generalization of the CAPM, and by including this market-timing factor, the 
CAPM becomes a special case. If the risk exposures to all of the first four 
macroeconomic factors were exactly zero (if Pil = . . . = Pi4 = O), then 
market-timing risk would be proportional to the S&P 500 total return. Under 
those extremely unlikely conditions, a stock's exposure to market-timing risk 
would be equal to its CAPM beta. Almost all stocks have a positive exposure to 
market timing risk (pis > O), and hence positive market-timing surprises Cf, > 
0) increase returns, and vice versa. 

A natural question, then, is whether confidence risk, time horizon risk, 
inflation risk, and business cycle risk help to explain stock returns better than 
the S&P 500 alone. This question has been answered using rigorous statistical 
tests, and the answer is very clearly that they do.6 

Market-timing risk is not required in an APT model that includes all the relevant 
macroeconomic factors. As a practical matter, some relevant macroeconomic factor may be 
difficult to measure or may not even be observable. Market-timing risk will capture the effects of 
any such unobserved macroeconomic factor. 

The probability that the first four macroeconomic factors do not add any information that is 
useful for explaining stock returns is less than the probability that a standard normal variable (a 
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Risk Exposure Profiles and Risks--Return Trade-off 
The risk exposure profile for the S&P 500 and the corresponding prices of 

risk (the risk premiums) are shown in Table 1.7 For each risk factor, the 
contribution to expected return is the product of the risk exposure (Column 1) 
and the corresponding price of risk (Column 2), and the sum of these products 
is equal to the expected return in excess of the 30-day Treasury bill rate 
(Column 3). Thus, if the 30-day Treasury bill rate were, say, 5.00 percent, the 
forecasted return for the S&P 500 would be 5.00 + 8.09 = 13.09 percent a year. 

TABLE 1. Calculation of Expected Excess Return for the 
S&P 500 

Risk Factor 

Contribution of 
Price of Risk Factor to 

Risk Expected Return 
Exposure x (%/year) = (%/year) 

Confidence risk 0.27 2.59% 0.70% 
T i e  horizon risk 0.56 -0.66 -0.37 
Inflation risk -0.37 -4.32 1.60 
Business cycle risk 1.71 1.49 2.55 
Market-timing risk 1.00 3.61 3.61 

Expected excess return 8.09% 

In general, then, for any asset, i, the APT risks-return trade-off defined by 
equation (3) is: 

random variable that is normally distributed with a mean of zero and standard deviation of 1) 
exceeds 20 in value; that is, it is virtually zero. See McElroy and Burmeister (1988). 

The model presented in this section uses parameters estimated by the BIRR@ Risks and 
Returns AnalyzeF ("BIRR is an acronym for Burmeister, Ibbotson, Roll, and Ross). The model 
is re-estimated every month, and the examples here and in the next sections use numbers taken 
from the April 1992 release, which is based on monthly data through the end of March 1992. 

The Risks and Returns Analyze@ is a PC-based software package for doing APT-based risk 
analysis with a model of the sort described in this paper. Although econometric estimation of APT 
parameters (the risk exposures, P i s ,  and the risk premiums or prices, P's) is beyond the scope 
of this paper, complete discussions of the more technical statistical issues involved in parameter 
estimation can be found in Brown and Weinstein (1983); McElroy, Burmeister, and Wall (1985); 
Chen, Roll, and Ross (1986); Burmeister and McElroy (1988); and McElroy and Burmeister 
(1988). 



where TB is the 30-day Treasury bill rate. The following four observations will 
help clarify this risks-return trade-off: 

1. The price of each risk factor determines how much expected return will 
change because of an increase or decrease in the portfolio's exposure to that 
type of risk. Suppose, for example, a well-diversified portfolio, p, has a risk 
exposure profile identical to that of the S&P 500, except that it has an exposure 
to confidence risk, P*,, of 1.27 instead of 0.27 (= P,,,,). Because the price 
of confidence risk (from Table 1) is 2.59 percent a year, the reward for 
undertaking this additional risk is 1.00 times 2.59-that is, the portfolio will 
have an expected return that is 2.59 percent a year higher than the expected 
return for the S&P 500. 

2. APT risk prices can be negative, and they are for both time horizon risk 
and inflation risk (P, < 0 and P, < 0). Consider first inflation risk. Almost all 
stocks have negative exposures to inflation risk because their returns decrease 
with unanticipated increases in inflation. Thus, the inflation risk contribution to 
expected return is usually positive (the negative risk exposure times the 
negative price for inflation risk equals a positive contribution to expected 
return). That is, for most i, Pa < 0, and because P, < 0, P, x P, > 0 for 
most i. 

3. Many stocks have a positive exposure to time horizon risk (P, > O), 
however, and thus, when the price of long-term government bonds rises 
relative to the price of 30-day Treasury bills, their return increases. Because 
the reward for time horizon risk is negative (P, < 0), time horizon's contribu- 
tion to the expected return for such stocks is negative; for stocks with a 
negative exposure to time horizon risk, its contribution is positive. 

Why should this be the case? The answer is that, just as you pay for an 
insurance policy that pays off when your house bums down, investors desire to 
hold stocks with returns that increase when the relative price of long-term 
government bonds rises. The fact that investors want to hold stocks having this 
characteristic means that the prices of those stocks have been driven higher 
than they otherwise would have been, and therefore, their expected returns are 
lower. Thus, the negative price for time horizon risk produces the desired 
result: stocks with larger (positive) exposures to time horizon risk also have 
lower expected returns. 
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New York Stock Exchange is indicated by the vertical dashed line. Again, note 
that the distribution is not normal and appears to be skewed to the right. 

As is evident from Figure 1, the business cycle risk for Reebok is much 
larger than for the S&P 500. These risk exposure profiles are shown below. 

Exposure for Reebok Exposure for S&P 500 

Confidence Risk 0.73 
Time Horizon Risk 0.77 
Inflation Risk -0.48 
Business Cycle Risk 4.59 
M a r k e t - T i g  Risk 1.50 

These exposures give rise to an expected excess rate of return for Reebok 
equal to 15.71 percent a year, compared with the 8.09 percent a year computed 
for the S&P 500. Figure 3 compares the risk exposure profiles for Reebok and 
the S&P 500.9 

In general, the risk exposure profiles of individual stocks and of portfolios 
can differ sigdicantly. For example, Figures 4, 5, 6, and 7 compare the 
respective risk exposure profiles for portfolios of low-capitalization versus 
high-capitalization stocks, growth stocks versus the S&P 500, a value portfolio 
versus the BIRR stock database, and a growth versus high-yield portfolio. 
These risk exposure profiles define APT styles, and they enable us to view 
traditional portfolio management styles from a new perspective that reveals 
their inherent macroeconomic risks. 

The usefulness to practitioners of risk exposure profiles and the risk-return 
trade-off is an empirical issue. Abundant evidence shows that market indexes 
are not mean-variance efficient; if so, the usual implementations of the CAPM 
using some market index as a proxy are invalid. More importantly, recent 
empirical evidence demonstrates that CAPM betas do not accurately explain 
returns. 

The multifactor APT approach has far greater explanatory power than the 
CAPM. Many econometric studies have verified the superior performance of 
models that include multiple factors (Postulate 1 of the APT) to explain returns 
and that use multiple factor premiums (Postulate 2 of the APT) to explain 
expected returns. These results are discussed in some of the papers listed in 

The BIRR Risk Index plotted in this and the following graphs is a single number that gives an 
approximate answer to the question, "Does A have more systematic risk, relative to the market, 
than B?" 
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How to Use the APT: Some Examples 
A primary concern for practitioners is not only to acquife an understanding 

of the APT but also to learn how to use it to enhance their investment 
performance. So far, we have concentrated on explaining the APT; now, we will 
briefly discuss several uses of the APT that every practitioner could easily 
apply. The following list is chosen to be exemplary of some widely used APT 
techniques, but it is by no means exhaustive. 

Evaluation of Macroeconomic Risk Exposures and Attribution of 
Return. Risk exposure profiles can vary widely for stocks and portfolios. 
They are determined by the risks a manager undertakes through stock 
selection, and in turn, determine a manager's APT style. A basic first task, 
then, is to identify the risk exposure profiles for portfolios. Usually, managers 
will want to compare their risk exposure profiles with those for appropriate 
benchmarks. A small-cap manager, for example, should know whether his or 
her portfolio differs in its exposure to macroeconomic risks from an appropriate 
index of small-cap firms. Any differences will account for performance differen- 
tials from the index. Only if the risk exposures are the same as the index can 
ex post superior performance be attributed to APT selection-selection of 
individual stocks that returned more than would be expected on the basis of the 
risks undertaken. 

Whatever the manager's risk exposure profile, the APT should be used to 
divide the mean ex post actual return into: (1) expected return, which is the 
reward for the risks taken, (2) unexpected macroeconomic factor return, which 
arises from factor bets and factor surprises, and (3) a ,  which arises from stock 
selection. Moreover, expected and unexpected factor return can be attributed 
to the manager's risk exposure profile. Thus, APT analysis will provide a better 
understanding of the true sources of actual portfolio performance. 

Index Portfolios. A closely related use of the APT is in the formation of 
index portfolios designed to track particular well-diversified benchmarks. The 
APT provides powerful tools for tracking any such benchmark portfolio. A 
tracking portfolio can be constructed simply by forming a portfolio with a 
matching risk exposure profile. The expost APT a can be made small by making 
the tracking portfolio well diversified so that the portfolio-specific return, call it 
E*, is near zero. 

Tracking a benchmark that itself is not well diversified, in the sense that its 
expost a usually is not near zero, is more difficult. In this case, not only the risk 
exposure profiles but also the benchmark's a must be matched. One way to do 



this is to form the tracking portfolio by random sampling from the stocks that 
constitute the benchmark. 

Tilting, or Making a Factor Bet. Good managers may possess 
superior knowledge about the economy. Suppose, for example, a manager 
believes that the economy is going to recover from a recession faster than most 
market participants do. If the manager is correct in this belief, the realizations 
of business cycle risk will be positive Cf4 > 0), and stocks that have greater risk 
exposures to business cycle risk (stocks for which Pi, is larger) will, ceteris 
paribus, outperform. 

To take advantage of this superior knowledge, the manager will want to 
make a factor bet on (or tilt toward) business cycle risk-alter the existing 
portfolio to increase its business cycle risk exposure without changing any other 
macroeconomic risks. Conversely, if a manager has special knowledge that the 
economy is going to slide into a recession, he or she will want to lower the 
portfolio's exposure to business cycle risk. 

Multimanager Fund Performance. Most sponsors employ more 
than one manager. Even though each may perform well when compared with a 
particular style benchmark, that is not the issue of most importance to a 
sponsor. A sponsor wants to evaluate the risks and performance of the overall 
fund. 

The sponsor should combine the portfolios of individual managers into one 
overall fund portfolio and then use the APT to examine the risk exposure profile 
and performance of the fund portfolio. Often, the combination of managers leads 
to risk exposures that the sponsor finds uncomfortable. If so, funds should be 
reallocated among the managers to achieve the desired fund risk exposure 
profile. 

The sponsor must also examine whether or not the overall fund return 
exceeds the benchmark and determine the sources of differences. 

Optimized Risk Control with Manager-Supplied Rankings. 
Many managers have their own proprietary methods for evaluating stock return 
performance, yet lack adequate methods for estimating their accompanying 
risks. The APT, or more accurately, part of the APT, is a perfect tool for such 
managers. 

To keep matters simple, suppose a manager has a personal ranking system 
that scores every stock on a scale from 1 to 10, where 10 is the score given to 
the stocks in the best expected return category. The objective is to emulate the 
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volatility of the S&P 500 but achieve a higher return. How could the manager 
use the APT? 

Let si be the score from 1 to 10 assigned to the ith stock (i = 1, . . . , N). 
The formal problem is to find portfolio weights, w,, w,, . . . , wN, for the N 
stocks in the selection universe such that the portfolio score is maximized but 
the risk exposure profile is similar to that of the S&P 500. More formally, the 
weights should result in the highest possible value for 

subject to the constraint that the portfolio betas, 

for j = 1, . . . , K, are close to the betas for the S&P 500. That is, the weights 
should make the risk exposure profile for the portfolio close to the risk exposure 
profile for the S&P 500 while maximizing the value of the portfolio's ranking 
score. If the ranking system works, the return will be superior to the S&P 500. 
If the resulting portfolio is well-diversified, it and the S&P 500 will have 
approximately equal volatilities. The proper diversification can be achieved by 
making N sufficiently large and by imposing a maximum value for the weights so 
that the portfolio contains a large number of stocks. This optimization problem 
is easily solved using linear programming. 

Long-Short Investment Strategies. Long-short, or market-neu- 
tral, investment strategies are receiving increased attention. The pure APT 
view of such strategies will be discussed first; then, it will be shown how 
managers with superior knowledge can use the APT to implement those 
strategies effectively. 

Suppose a manager holds a long portfolio with return rL(t) and a short 
portfolio with return rs(t); both have equal dollar values. Let the risk exposures 
for these portfolios be denoted by pLj and psi, j = 1, . . . , K. Assuming that the 
short position earns the 30-day Treasury bill rate, the manager's total return is 

Now, let the risk exposure profile on the long portfolio exactly match the risk 
exposure profile on the short position. Then, using equation (3), the expected 
returns on the long and short portfolios are equal, the expected return to the 
long-short strategy is simply TB(t), and the variance of the realized return is 



Because no stock is held in both the long and short portfolios, this variance is 
approximately 

The position has greater volatility than 30-day Treasury bills but no greater 
mean return. Therefore, it is not a very attractive strategy, particularly after 
trading costs. 

This strategy could become attractive if the APT alphas on the long position 
were sigdicantly larger than the APT alphas on the short position; that is, it is 
an attractive strategy for a manager with superior APT selection. Consider an 
exceptional manager who can pick two well-diversified portfolios of stocks, with 
no stocks in common, such that ol, > 0 for the long portfolio and a, < 0 for the 
short portfolio. If the manager also can match the risk exposure profiles of the 
long and short positions, the return would be oc, - as + TB(t) with a volatility 
approximately equal to that of 30-day Treasury bills. 

The APT can play a crucial role for such a manager: It provides an easy and 
quick way to match the risk exposure profiles of the long and short positions. As 
an example of this role of the APT, we constructed a long portfolio consisting 
of approximately 50 NYSE-listed stocks with the largest ex Post alphas over a 
sample period of 72 months (April 1986 to March 1992). We then computed the 
risk exposure profile for this long portfolio. A short portfolio of approximately 50 
NYSE-listed stocks, not in the long portfolio, was also selected. An optimization 
problem was solved to find portfolio weights for the short position that matched 
its risk exposure profile to that of the long position. The resulting risk exposure 
profile for the overall long-short strategy is illustrated in Figure 8; it has 
essentially zero systematic risk. The sole source of volatility (beyond the 
volatility of 30-day Treasury bills) for this long-short strategy comes from the 
E'S for the long and short positions. By having portfolios of 50 stocks or more, 
this volatility can be kept small. 

The performance of this long-short, or market-neutral, strategy for the 
most recent 12 months of the sample period (April 1991 to March 1992) is 
illustrated in Figure 9. The mean realized return was 30.04 percent a year, 
compared with 11.57 percent for the S&P 500, and the standard deviation of 
this realized return was only 6.26 percent a year, compared with 18.08 percent 
for the S&P 500. 

Mean--Variance Efficiency. The standard optimization problem of 
finding the portfolio with the highest expected rate of return for a given variance 
is easily solved within an APT framework. For this problem, the expected 
return could either be given by the APT equation, equation (3), or it could come 
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factors do not contribute to expected return, they do help to explain 
volatility, and they provide managers with a tool to evaluate the 
diversification of their portfolios. 

Other enhancements are being invented every day. As more and more tools 
become available and as understanding of the APT spreads, so does its 
application to portfolio management problems. 



Appendix A 

To derive the restrictions that a multifactor CAPM must obey, suppose that the 
CAPM were true for some market index of N assets. This index has a return 
denoted by rm(t) and has weights wml, w,,, . . ., wd summing to 1. Suppose also 
that Postulate 1 of the APT holds, that is, that the N asset returns are generated 
by the linear factor model (LFM) given in equation (1). We will then show that the 
APT is valid and find the CAPM restrictions that the APT risk prices must satisfy. 

This problem is solved by recognizing that the CAPM beta for any asset can 
be computed as a linear function of the LFM risk exposures; that is, the CAPM 
beta is equal to a linear function of the APT Pis. 

First note that the return on the market index is 

and hence is generated by a LFM with 

Pmj  = W m l  X Plj + . . + w m ~  X PNj for j = 1, . . . , K. 

Using Footnote 1, the CAPM beta for the ith asset is 

The latter can be computed from the LFM generating the return for the ith asset: 
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Because by Postulate 1 cov[e,(t), fi(t)] = 0, it follows that cov[a,(t), rm(t)] = 

cov[ei(t), ~,(t)]. Thus, under the usual assumption that the market index is well 
diversified and am(t) is approximately zero, we may set the last covariance term 
in the above expression for pi equal to zero. 

Under the CAPM, E[ri(t) - TB(t)] = Pi x E[rm(t) - TB(t)]. The APT is 
true when there exist numbers PI ,  . . . , PK such that 

It then follows immediately that the APT holds provided that 

for all j = 1, . . . , K. Conversely, if the APT is true and the above K CAPM 
restrictions on the Pis hold, then the CAPM is also true. Given an LFM for 
asset returns, these are the CAPM restrictions that are rejected in favor of the 
APT in statistical tests. 



Appendix B 

We will show that K well-diversified portfolios can substitute for the factors in 
an APT model. To simplify the computations, we assume that K = 2; the 
general case is easily handled using matrix algebra. Thus, suppose that two 
different well-diversified portfolios have returns given by 

and 

Also assume that the risk exposure profiles for the two portfolios are not 
proportional. We will show below that 

(a) The APT equation for the return on the ith asset, ri(t), given by equation 
(5), can be rewritten in terms of the portfolios with returns Rl(t) and 
R2(t). 

(b) Given the answer to (a), E[ri(t)] can be expressed in terms of the 
expected returns for the two portfolios. 

To prove (a) and (b), we introduce the following simphfymg notation: 

In this notation, the APT equations for the two portfolios are 

and 
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Takingy,(t) andy2(t) as given, the latter are two equations in two unknown z's, 
and they may be solved for 

and 

where 

and 

Note that as long as the risk exposure profiles for the two portfolios are not 
proportional, 6 # 0 and the solution given above exists. 

Given these results, with straightforward algebraic manipulation, equation 
(5) may be rewritten as 

where 

and 

This exercise establishes (a) above. 
Finally, taking expectations of the latter equation gives 

This formulation proves (b) above. 



Multi-Index Models Using 
Simultaneous Estimation of all 
Parameters 

Edwin J. Elton 
Martin J. Gruber 
Leonard N. Stern School of Business 
New York University 

The concept of index models and their role in explaining and understanding the 
pattern of security returns, what affects individual security returns, the 
selection of optimal portfolios, and the level of relative long-run (equilibrium) 
returns have been widely discussed. We will review these techniques as an 
introduction to the concepts of estimating multi-index models. 

Single- vs. Multi-Index Models 
Most of our analysis will be in the context of a generic multi-index model and 

a generic single-index model. The single-index model is included because it is 
familiar and because it serves as a useful benchmark against which to judge 
multi-index models. In addition, many of the problems with the multi-index 
model, and the economic intuitions behind the solution to those problems, can 
be illustrated for the case of a single-index model. 

The single-index model is simply a way of decomposing return on an asset 
into two parts. The first part, the systematic part, is the portion of return 
affected by influences common to all assets. The second part is the unsystem- 
atic part, which is assumed to be unique to the asset. Thus, 
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Asset 

where 

Rit = is the return on security i in time t, 
bil = is the sensitivity of security i to returns on Index 1, 
f1, = is the return on Index 1 in period t, 
ai = is the expected level of nonindex-related return for security i, and 
eit = is a random variable with mean of zero and variance 0:;; 

Note that the unique return is also split into two parts: its mean level, a ,  and 
its variability, ei, For the single-index model to be a reasonable description of 
reality, the unique part should be truly unique to the security in question and not 
related to another influence. Technically, this means that the value of the unique 
return for security i in period t is unrelated to the value for security j in period 
t. Because the a's are constants, this condition means 

E(eigjt) = 0 for all i and j, where i # j. 

Likewise, for the researcher to have correctly divided the return into its 
systematic and unique parts, the unique return must be unrelated to the index 
return so that 

E(eiJlt) = 0 for all securities. 

The single-index model describes return in terms of one common influence, 
and the multi-index model describes returns in terms of more than one common 
influence. Its structure is exactly the same as that of the single-index model 
except for the inclusion of additional indexes. Thus, the model can be written as 

where 

6, = the return on the jth index affecting stock return, and 
bC = the sensitivity of security i to the jth index. 

As in the single-index case, unique return is assumed to be uncorrelated 
across all securities; that is, 

E(eigjt) = 0 for all i and all j, where i # j, 



and systematic influences are assumed to be independent of unique influences: l 

E(eitfit) = 0 for all i and all j. 

The major reason for going to a multi-index model is the belief that influences 
beyond one index cause securities to be correlated with each other (move 
together). In fact, additional indexes are introduced in an attempt to have the e, 
be the unique influence so the covariance between the residuals in equation (2) 
will be approximately zero. This attempt to find a set of indexes that captures 
all sigmficant influences that affect multiple securities results in an approximate 
zero covariance between residuals that will be the key to designing a multi-index 
model. 

To this point, we have intentionally defined our analysis in the terminology 
of multi-index models. Historically, starting with Sharpe's single-index model, 
this terminology was commonly used both in the literature and practice of 
financial analysts. With Ross's (1976) description of the arbitrage pricing theory 
(APT) and the initial tests of Roll and Ross (1980) of the APT methodology, a 
different terminology came into existence. Expressions like equation (2) 
became known as a multi-factor return-generating process. The fi, which we 
denoted as returns on indexes, became known as factors, and the bii became 
factor loadings. 

Estimating the Multi-Index Model 
To use a multi-factor (multi-index) model, we need to estimate the 

right-hand side of equation (2). We need estimates of both thefi factors and the 
factor loadings, bii. Either the f i  or the bG can be asserted on a priori grounds 
with the other identified empirically, or both can be identified empirically. 

Clearly, estimating one set of parameters should be easier than estimating 
both sets simultaneously, but we do not do so because we do not know what the 
correct set is. We can illustrate this problem with the case of the single-index 
model. Usually, when estimating a single-index model, the index is taken to be 
the return or excess return (over the riskless rate) on some widely diversified 
portfolio. The most commonly used portfolios are the S&P 500 Index or the 
CRSP Index. One of these is simply asserted as being the relevant factor. 

If the Sharpe-Lintner version of the CAPM is correct, the right index to use 

An additional assumption that is frequently made is that the indexes are uncorrelated. This 
assumption does not create problems, because a set of correlated indexes can always be 
converted to a set of uncorrelated indexes. 
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for explaining equilibrium returns is an index of the return on all risky assets in 
which the weight on each return is the relevant market proportion of that asset. 

If the model is not correct, there is no theoretical way of identdymg an 
appropriate index and the definition of the relevant index is not clear-cut. 
Furthermore, even if the standard CAPM is a relevant equilibrium model, no 
one would be able to calculate the return on a market-weighted index of all 
assets. Although a market-weighted index of equities is readily available, 
market-weighted indexes of other assets, such as real estate, are not. 
Plausibly, a non-market-weighted index of equities (one that places greater 
weight on equities correlated with excluded assets such as real estate) could be 
a better representation of the true "market" index than is a market-weighted 
index of equities alone. 

If we feel a multi-index model better represents the return structure, the 
problems become more severe. No theoretical multi-index equilibrium model is 
generally accepted. Although alternative theory suggests certain broad influ- 
ences that might affect equilibrium returns, these influences are not easily 
translated into empirically measurable influences. 

An alternative to prespecdymg indexes is to try to have the historical return 
series itself suggest what portfolios of securities would best serve as indexes. 
Equation (1) and its explanation suggest the characteristics these indexes 
should possess. In particular, they should separate the common influences in 
returns from the unique influences in returns. After we have specified the 
indexes, the unique returns on securities should be uncorrelated with each 
other. In addition, the structure should be parsimonious; that is, returns can be 
described in terms of a limited number of indexes. Finally, having the indexes 
represent separate influences would be desirable. 

Two statistical techniques accomplish these goals: factor analysis and 
principal components analysi~.~ The most common technique is factor analysis. 
Factor analysis was devised to define a set of indexes mathematically so that the 
covariance between security returns is minimized after the indexes have been 
removed. This assures that cov(e,ej) is as close to zero as it can be. 

More precisely, once the user sets the number of indexes desired, factor 
analysis wik 

Define the optimal composition of each index (the weight on each 
security in each index), 

See the appendix to this chapter for a more detailed discussion of factor analysis and principal 
components analysis, as  well as  the differences between them. 



Speclfy the return of each index at each point in time (this is the same 
concept as the return of the S&P Index at each point in time), 
Calculate the bG, or sensitivity of each stock to each index, and 
Measure the average explanatory power of the model for each stock. 

One can then repeat the analysis for a different number of factors (indexes) 
and determine the probability of needing to add another factor to the model. 

Design Issues 
Although the idea of letting the data design the model has a lot of appeal, in 

statistical methodology, as in economics, there are few free lunches. The 
techniques come with their own problems and their own set of choices. We will 
discuss four of these: the effect of the choice of data, the number of indexes to 
use, indeterminacy of the model, and computational diaculties. 

The Choice of Data. The input to factor or principal component analysis 
is a sample of security returns. In preparing the return data, the researcher 
must select both the time period of returns and the sample of stocks (or 
portfolios of stocks) to use to estimate a factor structure. Ideally, the structure 
will hold for time periods and securities beyond those used in the estimation 
sample. 

Obviously, the data cannot suggest a factor if that factor was not present 
during the time period chosen. For example, assume that changes in oil prices 
affect equity returns. Using returns from a period with minimal changes in oil 
prices will probably mean that changes in oil prices had a very small influence on 
security returns in the period and that this factor will not be recovered by factor 
analysis. Similarly, if the researcher selected a sample of stocks that happened 
to have only a few stocks that are sensitive to changes in oil prices, the influence 
of oil prices would not show up as a factor. 

Researchers frequently attempt to mitigate computational problems by 
factor analyzing the returns on portfolios of securities rather than returns on 
individual securities. This technique can introduce other problems into the 
analysis. For example, when factor analyzing a time series of returns, generally 
the first index is a portfolio of most of the assets whose returns are being factor 
analyzed and the sensitivity of all assets to the index is positive. This is not true 
with subsequent indexes, however. Additional indexes generally measure 
nonmarket influences. For example, it is not uncommon when factor analyzing 
equity returns that the second index is highly correlated with firm capitalization 
(captures the small-stock phenomenon) with the effect of the market removed. 
Some securities will have positive sensitivities to the influence of size and 
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others negative. The sensitivities on a portfolio of securities is a weighted 
average of the sensitivities of the securities that compose it. If some sensitiv- 
ities are positive and some negative, the portfolio's sensitivity could be zero or 
close to zero. Factor analyzing returns at the portfolio level could mean that 
important influences would not be detected. 

The Number of Indexes. A second design issue that affects results is 
the number of indexes in the return-generating process. The factor analytic 
techniques speclfy, for a fixed number of indexes, the indexes that best 
separate out common influences from unique influences. Although statistical 
techniques can determine whether adding another influence "statistically" 
improves the explanatory power of the model, common sense and economic 
significance play a major role in deciding on the number of factors to analyze. 
For example, does the composition of the last index make intuitive sense in 
terms of capturing an influence the analyst feels might affect security prices. For 
testing economic sigmficance, the analyst will examine such issues as whether 
the index improves the ability to construct portfolios that match a market index 
and whether the index helps explain the time series of security returns in a 
period other than when the model was fit. 

The Nonuniqueness of Factors. A third design issue is concerned 
with the indeterminacy of the structure of the multi-index model.3 An infinite 
number of models can separate returns into systematic and nonsystematic 
components. For example, consider the single-index model, and assume the 
index is the return on the S&P Index. In a second model, the index is half the 
return of the S&P Index and all the sensitivities are doubled, but the result is 
the same separation of return into systematic and unsystematic parts. 

Multi-index models become even more complex. An infinite number of 
specifications will result in the same separation of systematic and unsystematic 
returns.4 When the indexes or the sensitivities are prespecified, generally a 
natural scaling occurs and a set of indexes suggests itself. When a researcher 
uses techniques that produce a model that best captures the past return 
structure, he or she must realize that the resulting structure is not unique. 
Some researchers will examine alternative structures in an attempt to under- 

Principal components analysis does provide one particular determinate solution to the factor 
solution. See the appendix to this paper. 

In technical terms, solutions are determined only up to a linear transformation of the factor 
structure. 



stand what influences are affecting security returns and to convince themselves 
that the overall separation makes intuitive sense. 

Nonuniqueness is a concern in certain applications and not in others. Any 
solution is correct in the sense that it explains (and predicts) returns as well as 
any other solution. Some solutions, however, are easier to interpret econom- 
ically than others. Also, two researchers using slightly different solution 
algorithms or slightly different samples can come up with solutions that are 
simply transformations of each other but that appear to be very different. 

Computational Problems. A fourth problem with factor analysis is the 
difficulty of factor analyzing returns for a large number of securities. The 
primary problem is computational. Analyzing a large number of securities is 
costly and impossible to do with most standard statistical packages. To get a 
meaningful factor analysis, however, requires a longer data series than the 
number of firms being analyzed. With 20 years of monthly data, one is restricted 
to fewer than 240 firms. 

Two procedures have been introduced to deal with difficulties in factor 
analyzing a large number of securities. The first involves performing factor 
analysis on subsets or groups of securities. This multisample approach was 
introduced by Roll and Ross (1980). The second is the portfolio approach 
introduced by Chen (1983). 

In the group, or multisample, approach, securities are divided into samples 
and maximum likelihood factor analysis is used to extract factors from each 
sample. The difficulty with this approach is that, because of indeterminacy, the 
factors extracted in each sample need not be extracted in the same order or 
even with the same sign. How then can one determine whether the same 
factors or different factors (unique to each group) have been extracted in going 
from group to group? The solution to this problem represents an opportunity to 
improve our identification of the return-generating process. By analyzing the 
factors produced from different groups and identifying those influences that are 
common across two or more groups, we can differentiate between factors 
unique to one group and general factors that apply to all groups. 

Chen's approach rests on examining the return behavior of portfolios of 
securities rather than individual issues. This approach has two disadvantages. 
F i s t ,  no matter how large the sample used to form portfolios, one cannot tell 
whether the factors are unique to that sample or common to all securities. 

Two papers, Cho, Elton, and Gruber (1984) and Brown and Weinstein (1983), discuss 
techniques for identifying the common factors across groups. 
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Second, the results obtained by this methodology are very sensitive to the 
portfolio formatioli technique that was used. 

Applications of Multi-Index Models 
In this section, we will discuss one simple example to illustrate the principles 

discussed earlier, and then we will describe two applications: one to the 
Japanese equity market and the second to the U. S. bond market. The purposes 
of these examples are to illustrate the basic ideas discussed earlier and to 
convey to the reader the kinds of tests and verification that are needed to be 
confident that the models are useful. 

A Simple Example. To illustrate the principles discussed earlier, we 
ran a principal components analysis on historical return data for four market 
indexes. The indexes were the Morgan Stanley Capital International return 
indexes for common stocks in Canada, the United States, France, and Belgium. 
The data were monthly return data for the decade ending December 1988. The 
Morgan Stanley indexes are market-weighted indexes of the major stocks in 
each market. Table 1 shows the variance-covariance matrix and the correlation 
matrix. The variance entries are on the diagonal of the matrix, the covariance 
entries are above the diagonal, and the correlations are below the diagonal. The 
returns are positi;ely correlated between all pairs of countries, and the highest 
correlation is between the two North American countries and the two European 
countries. Thus, two indexes will be needed: a general world index and an index 
that reflects whether the country is North American or European. 

TABLE 1. Variance--Covariance Matrix and Correlations 

Country Belgium Canada France United States 

Belgium 50.34 17.55 34.22 13.79 
Canada 0.38 42.41 19.64 22.39 
France 0.65 0.41 55.11 15.64 
United States 0.41 0.72 0.43 23.03 

We ran a principal components analysis on the variance-covariance matrix 
and obtained two explanatory factors. The return on one factor was given by 



where 

R = return, 
f = factor value, 

B = Belgium, 
C = Canada, 
U = United States, 
F = France, and 
t = time period. 

Note from equation (3) that the first index is very close to an equally weighted 
index of the four country indexes. Thus, we might label the first factor a "world 
factor. 

The second factor is 

This index is long in North America and short in Europe. It could be 
characterized as measuring the performance of North American stocks relative 
to Europe. The returns for each country and on each of the two factors for the 
last four months of our sample period are shown in Table 2. 

TABLE 2. Returns in Countries and on Factors 

Period Belgium Canada France U.S. Index 1 Index 2 

1 2.08% 14.64% 7.25% 6.08% 10.99% 9.85% 
2 -4.95 13.41 -0.89 -1.03 -0.84 11.83 
3 -16.57 -22.03 -15.95 -8.82 -34.85 -7.16 
4 18.72 3.36 11.00 4.33 17.24 -7.13 
Mean for 120 

months 2.16 1.02 1.54 1.33 

Note: To get the return on the index, subtract the mean return shown at the bottom of the table from each 
month's return. 

The b's (the sensitivities, or factor loadings) could be estimated by 
regressing the country returns on the two factors. Alternatively, the sensitiv- 
ities are an output of the analysis. As one would expect, the b's are positive for 
the North American countries and negative for the European countries on the 
second index. The R2s (explanatory power) of the two-index model for each 
country were 0.81 for Belgium, 0.95 for Canada, 0.84 for France, and 0.74 for 
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the United States. The two-factor model does an excellent job of explaining 
returns. 

A Multi-Index Model of the Japanese Stock Market. We selected 
Japanese data to demonstrate factor analytical solutions because of general 
interest in the Japanese markets and because Japan is an economy for which the 
multi-index models have an especially clear-cut advantage over the single-index 
model.6 The sample of stocks originally selected for study was the 400 stocks 
that make up the Nomura Research Institute (NRI) 400 stock index. The 
Nomura Index, like the S&P Index, is market weighted. The 400 stocks in the 
index are among the largest in Japan, and attention is given to industry balance 
in selecting them. The 400 stocks in this index represent more than 60 percent 
of the total market value of all stocks listed on the Tokyo stock exchange. Seven 
of the stocks had incomplete data and were dropped from our sample. 

We divided the remaining 393 securities into four approximately equal-sized 
samples. We then performed maximum likelihood factor analysis on the 
variance-covariance matrixes for each of these groups. The input data were the 
returns for each security for 180 months. 

How many factors? The first problem in doing a factor analysis is 
deciding on the appropriate number of factors to include in the model. Tests of 
the appropriate number of factors can be separated into those that look at one 
group at a time and those that take advantage of the fact that solutions for more 
than one group have been obtained. Although we will emphasize the latter 
because it focuses on the commonality of the factors across groups, we will 
briefly examine the standard single-group tests. 

Single-group tests. To obtain an initial idea of how many factors might be 
present in the return-generating process, ten factor solutions (using maximum 
likelihood factor analysis) were performed on each of our four samples. That is, 
for each sample, a maximum likelihood solution involving first one factor, then 
two factors, then three factors, and continuing through ten factors was 
calculated. Three techniques in the literature on factor analysis are commonly 
used to decide on the correct number of factors needed to explain the 
covariance matrix. These are chi square (Lawley & Maxwell 1971), information 

This section is based on an article by Elton and Gruber (1990). Other authors have 
documented the success of alternative forms of multi-index models in Japan. See Brown (1990) 
and Harnao (1990). The reason the multi-index model works especially well in Japan is the higher 
residual covariance between security returns after the iduence of the market has been removed. 
This result may be attributable to some structural difference between the U.S. and Japanese 
economies or it may be attributable to the high percentage of corporate cross-ownership in Japan. 



criteria (Akaike 1974b), and Baysian criteria (Schwartz 1978). Of the three, 
Schwartz's technique is the most conservative in estimating the number of 
sigmficant factors. The chi square test and Akaike's information criteria tend to 
include factors that, although statistically sigmficant, have little economic 
importance. When we used either of those two tests, the results showed that, 
for each sample, at least ten factors were present in the return-generating 
process. We did not test for the optimum number because we had not 
performed factor solutions involving the extraction of more than ten factors. 
Also, alternative tests, as well as previous attempts by others to identify the 
return-generation processes for other samples of securities, indicated the 
presence of fewer than ten  factor^.^ 

Schwartz's Baysian criteria provided a much more parsimonious description 
of the return-generating process. Schwartz's method produces a statistic that 
reaches its minimum at the "correct" number of factors extracted. The value of 
Schwartz's statistic for each group for alternative numbers of factors (one 
through ten) is shown in Figure 1. Schwartz's criteria identified three factors as 

' sigmficant in the return-generating process for Sample 1 and four factors for 
Samples 2, 3, and 4. 

The conclusion from examining the number of factors present in the 
return-generating process of each sample separately is somewhat ambiguous. It 
rests on the choice of the test used to determine sigmficance. The answer 
would seem to be either four, ten, or more factors. This ambiguity illustrates 
how cautious one should be about placing too much reliance on statistical 
sigmficance in deciding on the number of factors. The next step is to use 
information from more than one group to decide on the number of factors. 

Mult$le-group tests. The intent of our analysis was to estimate a return- 
generating process that describes the return on all stocks that are comparable 
to the stocks in the NRI 400 Index. For any one of the four samples, as more 
factors were added to the solution, the probability increased that the added 
factors are idiosyncratic to the stocks in that sample or a subset of those stocks 
rather than factors that explain the covariance structure of returns among large 
groups of securities. If, in fact, the factor solution from a sample captured 
general influences, then the solution from a second group should reflect the 
same general influences. We could not, however, simply compare the first 
factor from a sample with the first factor from another sample and the second 
with the second, and so forth. Factor solutions are only unique up to a linear 
transformation. Therefore, the first factor from one sample may be the second 

See, for example, Roll and Ross (1980), Hamao (1990). 
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FIGURE 1. Schwartz's Baysian Criterion 
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factor from a second sample or even a linear combination, of the first, second, 
third, and fourth factors from the second sample. Although some attributes of 
maximum likelihood factor analysis will tend to extract factors in a parallel 
manner and to some extent lessen this problem, they do not eliminate it.* 

This problem can be corrected by canonical correlation. For an n-factor 
solution, find that linear combination of the n factors from one sample that is 
most highly correlated with the best linear combination of the n factors from a 
second sample. After removing this correlation, find the second linear combi- 
nation of the n factors from the first sample that is most highly correlated with 
the linear combination of the n factors from the second sample. This process is 
repeated n times. By finding best-fit linear combinations, canonical correlation 
removes the problem of factors from one sample being linear transformations of 

See Roll and Ross (1980) and Dhrymes et al. (1984) for a debate on this issue. 



factors from a second sample. If, in fact, one has estimated too many factors, 
then after removing the common factors, the remaining canonical variates 
should be uncorrelated. 

Table 3 presents the average (across four samples) squared canonical 
correlation for the first canonical variate out of the one-factor solution, the 
second canonical variate out of the two-factor solution, proceeding through the 
seventh canonical variate out of the seven-factor solution. The results indicate 
that the likely solution is either four or five factors. The canonical R2 of the 
fourth linear combination from a four-factor solution is almost 60 percent; for 
the fifth linear combination from a five-factor solution, it is slightly more than 20 
percent; but for the sixth linear combination of the six-factor solution, it is less 
than 5 percent. 

TABLE 3. Canonical R, ith Canonical R* from the i Factor 
Solution 

The evidence so far would seem to support a four-factor solution with the 
fifth factor worth considering. Although we have argued that canonical corre- 
lation is the correct way to determine whether factor structures from one group 
are the same as those from a second group, the simple correlation pattern 
between factors is also worth examining in order to see the type of orthogonal 
transformation that can take place. Table 4 presents the simple correlation 
between the factors extracted from Samples 1 and 2 for the four-factor and 
five-factor solutions. Note that in the four-factor solution, the only correlations 
above 0.10 occur for the first factor from Sample 1 with the first factor from 
Sample 2, the second with the second, and so forth. For the five-factor solution, 
however, this clear pattern fractures. In addition, some factors from one group 
do not seem to be associated at all with factors from the other group. For 
example, Factor 5 from Sample 1 and Factor 4 from Sample 2 have only minimal 
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correlation with any of the factors from the other group. This result also 
supports the four-factor solution. 

TABLE 4. An Example of a Factor Pattern: Correlation of 
Factor between Samples 1 and 2 

Sample 1 

Sample 2 F1 F2 F3 F4 F5 

Four factors 
F1 
F2 
F3 
F4 

Five factors 
F1 
F2 
F3 
F4 
F5 

Note: Dash = less than 0.1. 

With one four-factor solution for each of the four groups, the problem could 
be which solution to accept, but this is not really a problem. Each four-factor 
solution is close to a linear transformation of any other four-factor solution. 
Therefore, they should, for all practical purposes, work about equally well in 
explaining returns. In fact, they all have about the same explanatory power 
across securities and portfolios of securities. For example, the R2 of the Tokyo 
Stock Exchange (TSE) varied between 0.902 to 0.928 across the four different 
factor solutions. 

The model's explanatory power. Having determined that returns are 
related to four factors and having produced a particular four-factor solution, the 
next step is to examine how much of the total return these four factors explain 
and to compare this result to the amount explained by the more conventional 
single-index model. 

To examine this question, we used returns on 20 groups obtained by ranking 
the securities in the NRI 400 by size (total equity asset capitalization). Grouping 
by size will, of course, increase the amount explained by almost any model. At 
the same time, it creates a manageable set of data that allows examination of 
average explanatory power and explanatory power across sets of stocks. 



Table 5 shows the sensitivities and adjusted R2s when the returns on each 
of the 20 portfolios are regressed against the four factors for the 15-year period 
April 1971 to March 1986. Across the 20 portfolios, the average adjusted R2 is 
78 percent. Of the 80 different sensitivity estimates, all but 18 are significant at 
the 5 percent level. 

TABLE 5. Sensitivities and Explanatory Power for the 
Four-Factor Model 

Beta Coefficients 

Portfolio F1 F2 F3 F4 Adiusted R2 

1 0.0428 0.0092 
2 0.0442 0.0048 
3 0.0427 0.0034 
4 0.0417 -0.0003" 
5 0.0421 0.0041 
6 0.0396 0.0022" 
7 0.0388 0.0077 
8 0.0380 0.0078 
9 0.0417 0.0059 
10 0.0356 0.0025" 
11 0.0375 0.0023" 
12 0.0384 - 0.0007" 
13 0.0347 - 0.0037 
14 0.0374 -0.0029" 
15 0.0368 -0.0037 
16 0.0384 -0.0059 
17 0.0330 -0.0087 
18 0.0385 -0.0004" 
19 0.0364 -0.0022" 
20 0.0364 -0.0065 

Average 

"Insignficant at the 5 percent level. 

To compare these results with those for the single-index model, returns on 
the 20 portfolios were regressed against the NRI 400 index. Because the NRI 
400 index is value weighted and because it is made up of the same 400 stocks 
used to form the 20 groups, the relationship between the 20 portfolios and the 
index is likely to be higher than if we had chosen another market index. Table 
6 shows the results. As one might expect given the construction of the index, 
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TABLE 6. Sensitivity and Explanatory Power for One-Index 
Model 

Portfolio Beta Coefficient Adjusted R2 Alpha Average Return 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Average 

the R2 declines with size. The extent of the decline is dramatic. The adjusted 
R2 is less than 50 percent for the smaller eight portfolios and less than 15 
percent for the portfolio of smallest stocks. The four-factor model explains 
considerably more of the time series of security returns than does the 
single-factor model. The average adjusted R2 is 55 percent compared with 78 
percent for the four-factor model. 9 

Comparing the explanatory power of the first factor in the four-factor model 
with the explanatory power when all four factors are included shows that the 
added three factors explain a significant proportion of the variability of returns. 

The sensitivity of portfolio returns to the NRI 400 index (beta) also declines 

That the four-factor model has a higher explanatory power than a single-factor market model 
in the fit period is to be expected. The size of the difference, however, is not the same as for U.S. 
studies, nor is the deterioration with size. 



with size, which was not at all expected, because beta is usually considered a 
measure of risk. For U. S. data, the beta coefficient increases as size decreases, 
so smaller firms are viewed as having greater risk. For Japanese data, the 
reverse is true. This result must be interpreted with some caution, however. 
The firms in the sample are all fairly large. The 400 companies that compose the 
NRI 400 are selected from among the largest firms on the TSE, which lists 
1,100 h s  in its first section. Thus, the relationship between size and beta is 
found in the larger firms of the first section of the TSE. 

Also evident from Table 6 is that return is strongly related to size. The 
difference between the average return on the small and large firms is more than 
1 percent a month. Furthermore, the relationship is almost monotonic. These 
results mean that the smaller firms provide a higher return as well as lower 
beta. If beta is a risk measure, this evidence strongly favors the purchase of 
small stocks. Alternatively, perhaps beta is not a sufficient metric for risk. The 
relationship between return and size is at least partially captured by the 
four-factor model. For example, the sensitivities shown to Factor 4 are ranked 
by size. A similar pattern, although less pronounced, is seen in Factors 2 and 3. 
Thus, part of what the four-factor model is picking up relative to the one-factor 
model is a size effect. 

Factor sensitivity stationarity. Another interesting question is the 
stability of the sensitivity coefficient, b$ We concentrated on Factor 4 because 
it generally has the least stable sensitivity of the four factors. Table 7 shows the 
sensitivity coefficients for Factor 4 for the 15-year period and three nonover- 
lapping 5-year periods. Although not identical, clearly the sensitivities have the 
same pattern across the 20 groups. The correlation between the sensitivities 
for the 1971-76 and 1976-81 periods is 0.97; the correlation between the 
1976-81 and 1981-86 periods is 0.95. 

The average absolute difference in sensitivity between the 1971-76 and 
1976-81 periods was 0.0024 when the average absolute value of the sensitivity 
in the 1971-76 period was 0.0105. On average, the change was less than 23 
percent. Likewise, the average absolute difference in sensitivity between the 
1976-81 and 1981-86 periods was 0.0039, with an average absolute value of 
the sensitivity in 1976 to 1981 of 0.0139. Thus, the average change was about 
28 percent. The sensitivity measures between nonoverlapping periods are very 
stable for Factor 4. The stability is even more pronounced for the other factors. 

In this section, we have shown that a four-factor model explains returns 
better than a one-factor model and exhibits stable sensitivities over time. 
Although some increase in explanatory power is guaranteed as we move from 
a one-factor to a four-factor model, the magnitude of the increase, particularly 
for low-capitalization portfolios was unusually large. A much more powerful test 
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TABLE 7. Sensitivity to Factor 4 

April 1976- April 1981- April 1976- April 1971- 
Portfolio March 1986 March 1986 March 1981 March 1976 

'Insimcant at 5 percent level. 

of whether a four-factor model is superior to the one-index model is to make 
comparisons in a forecast mode. We will now examine one such comparison. 

Index Matching. In index matching, for each model (the one-index and 
four-index models), a portfolio is constructed that has the same sensitivity 
(beta) or sensitivities as the index being matched, with minimum residual risk 
and (approximately) a fixed number of securities. The second step is to examine 
the ability of these portfolios to match the index over a period of time 
subsequent to when they are formed. 

The index-matching test is a joint test of a number of hypotheses. One 
aspect affecting performance is whether the market has one or four factors. 
Even with four factors, the one-factor model could still perform better than the 
four-factor model if the historically estimated sensitivities for the four-factor 
model were poor forecasts of future sensitivities and the historical sensitivities 



for the single-index model were a good predictor of future sensitivities. Finally, 
if the sensitivity of the market to the four factors is very stable over time, the 
performance of the two models might be quite similar, even if the four-factor 
model were a superior description of reality. In this case, matching market 
betas is equivalent to matching factor sensitivities. Thus, the index-matching 
tests are joint tests of the model, the stability of the sensitivities, and the 
stability of the relationship of the market to the factors. 

We attempted to match the Nikkei 225 Index over the five-year period 
January 1, 1981, to December 31, 1986. The first step was estimating 
sensitivities for each security. Sensitivities were estimated on a quarterly basis 
for both the single-factor model and the four-factor model. For the market 
model, we simply ran a regression of the return on each of the 393 stocks in our 
study against the TSE Index at the beginning of each quarter using the previous 
five years of monthly data. For the four-factor model, a factor analysis was run 
at the beginning of each quarter, using the prior 11 years of return data to 
determine the composition of the factors. Then, at the beginning of each 
quarter, we regressed the prior five years of monthly returns for each of the 
393 securities against returns on the four factors. The regression coefficients 
were the sensitivities or betas used in the next step. To match the Nikkei, we 
need to know the sensitivity of that index to our model. To estimate the 
sensitivity of the Nikkei 225, we regressed it against both the TSE Index for the 
market model and the four indexes for the four-factor model. 

Once the sensitivities were determined, we calculated the composition of 
the portfolio with minimum tracking error. Matching portfolios were determined 
for portfolios of about 25, 50, and 100 securities. For example, for the market 
model with 25 securities, quadratic programming was used to produce a 
portfolio with approximately 25 securities that (1) had the same beta as the 
Nikkei index and minimal residual risk from the market model, (2) involved full 
investment, and (3) had appropriate upper and lower limits on investment in 
each security. For the four-factor model, the portfolio is constrained to match 
the sensitivity of the Nikkei index to each of the four factors. This procedure is 
repeated for 25, 50, and 100 securities and for each quarter, or 20 times for the 
five-year period. 

Having determined the portfolio composition at the beginning of each 
quarter, we then calculated the return on the Nikkei 225 adjusted for dividends 
each month, as well as the return on the matching portfolio, using the market 

lo Getting the quadratic programming solution to contain approximately 25 securities involved 
iterating the solution for different limits on the fraction invested in each security. 





four-factor model cut the average squared forecasting error, in some cases, by 
more than half. 

The index-matching test involves forecasting the model and parameters. 
Thus, the difference in number of factors during the fit period does not bias the 
results. The ability of the four-factor model to allow the construction of a 
portfolio that tracks a second portfolio more closely is powerful evidence that 
the four-factor model describes reality better than the single-factor model. l2 

A Multi-Index Model of Bond Returns. As a second example of the 
estimation of a multi-index model from historical returns, we will discuss an 
application to bonds. In this case, we were attempting to find a return- 
generating model that would be useful in protecting against shifts in the term 
structure of interest rates. 

Estimation of a multi-index model using bond returns has a basic problem. 
An assumption underlying most estimation techniques is that the structure of 
the multi-index model remains stable over time. For bond returns, however, 
this is unlikely to be true. The factor determining how bond returns move 
together is a shift in the term structure, which affects long bonds more than 
short. Further, examining the return series for a single bond would mean that 
the return series is for a bond with changing maturity and changing sensitivity 
to a shift in the term structure over time. To mitigate this influence, each of the 
portfolios of bonds for which a time series of returns was constructed had a 
constant maturity over time and hence roughly a constant sensitivity to the 
factors. 

Using these time series, we constructed the correlation matrix by standard- 
izing returns to have a mean of zero and a variance of 1. We used the correlation 
matrix because of evidence of Gibbons (1982) that factor analysis of the 
correlation matrix for U.S. bond data is more stable than factor analysis of the 
variance-covariance matrix. We then performed a maximum likelihood factor 
analysis on the correlation matrix. To obtain indexes over a large sample, we 
constructed portfolios of bonds that were perfectly correlated with each factor 
from the factor analysis and that were uncorrelated with other indexes. We then 
estimated the sensitivities by using least squares regression of the constant- 
maturity portfolios on the indexes. 

The question now is how to decide if this multi-index model is useful. We 

l2 AS we discussed earlier, this is a joint test. It is not very plausible, however, that the 
four-factor model is more stable than the one-factor model. Its superior performance is likely to 
be because of the presence of multiple factors rather than greater stability of sensitivities. 
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examined its usefulness on a relative basis: Did it perform better than 
alternatives others had suggested? We compared this multi-index model with 
other models in which either the indexes or the sensitivities (durations) were 
prespecified. We examined both a single-index and a two-index model. We 
stopped at two indexes because, after removing two indexes, the covariance 
between unique return, E(eiej), for our portfolios was so close to zero that 
extracting additional indexes was not feasible. 

We used three different sets of tests.13 First, we examined which model 
serves as a better forecaster of future returns. Within the period that the 
factors are extracted, the two-index model would explain more than the one 
index. If the second index is spurious, however, or if sensitivity to the second 
index is unstable over time, then the single-index model might well work best. 
The models were compared by examining the average absolute difference 
between forecasted return and actual return. 

The second tests were correlation tests. If a multi-index model is the correct 
one, then the covariance of unique return across portfolios, E(eiej), should be 
close to zero. Once again, this idea was tested for forecasted returns. In this 
case, we compared the average absolute value of the covariance between 
residuals. 

The third test has its origins in immunization. The cash flows from an 
arbitrary portfolio of bonds was used to represent a set of liabilities. Because 
the value of the portfolio of liabilities at each point is known, the change in value 
of the liabilities (the portfolio's return) can be calculated. We tried to immunize 
these liabilities by constructing a second portfolio of bonds that moved in unison 
with (had the same return as) the portfolio of liabilities. If we have the correct 
return-generating process, then a portfolio of assets with the same sensitivities 
to the factors as the liabilities should be immunized and differences in return 
should be random. 

In this study, the two-index model outperformed the single-index models; 
for bonds, two factors seemed to be necessary. Furthermore, prespecifying the 
sensitivities as durations rather than estimating them from the data produced 
the poorest results. In this case, however, prespeclfylng the two indexes as 
returns on a widely diversified portfolio of short bonds and a widely diversified 
portfolio of long bonds outperformed the model for which the two indexes were 
estimated empirically by factor analysis. The factor structure was sufficiently 
unstable over time that it was better to select two portfolios widely separated 

l3 See Elton, Gruber, and Nabar (1988) for a more detailed description of the methodology and 
results described in this section. 



in maturity and broadly diversified and use them as the portfolios (indexes) of 
interest over time. 

Conclusions 
In this paper, we have reviewed some methodology for simultaneously 

estimating the indexes and sensitivities in a multi-index model. We have 
discussed some of the problems with this methodology and described one 
example, the Japanese stock market, for which the method worked extremely 
well, and one example, U.S. bonds, for which it worked less well. 

We also described some tests of how well a factor model works. Two points 
are particularly important: Whether a model works well or poorly can only be 
judged in the framework of a particular application (and then it should be judged 
in a forecast mode), and the performance of the model is only good or bad 
relative to alternative models. Good performance is not an absolute concept. 

We should close with a brief discussion of the methodology we have 
discussed in this chapter versus the methodology of prespecifying sensitivities 
or indexes. Estimating both parameters of a multi-index model has a charac- 
teristic that is both its fundamental strength and its major weakness. Its 
strength is that it requires no a priori specification of the influences that affect 
returns. This makes such models an ideal tool for explaining new types of data. 
This analysis can provide real insight into the influences that affect returns. 
Furthermore, an n-index model derived from a set of data via factor analysis 
explains those data better than any other n-index model. The weakness of the 
factor solution is that it may or may not perform better in any application 
involving forecasts. Moreover, the factor solution lacks the intuition contained 
in a model constructed on the basis of economic logic, and it is usually more 
difficult to explain to clients. 

A researcher might well wish to use combinations of the models discussed 
in the various sections of this monograph. If an analyst feels confident that he 
or she can identify one or more economic variables that affect security returns 
but that other, unknown factors might be important, factor analysis can help 
identify these unknown factors. For example, a researcher might believe that all 
equity returns are affected by the market but that undefined sector influences 
are also instrumental. One solution is to estimate the single-index model using 
the market index and then factor analyze the residuals of the single-index model 
to derive other factors. 





Appendix A 

Several statistical techniques can be used to produce a set of indexes that 
explain the interrelationship among security returns. The most commonly used 
techniques for identifying the influences (factors) affecting security returns and 
sensitivities (factor loadings) simultaneously are principal component analysis 
and factor analysis. 

Principal Component Analysis 
Principal component analysis is perhaps easier to understand than factor 

analysis. For returns on a defined set of stocks over a predetermined time span, 
compute an index (weighted average of that set of returns) that explains the 
maximum amount of the variation in the variance-covariance matrix of security 
returns. l4 Usually, the first principal component looks somewhat like a market 
index with all stocks entering with positive weights. Then, search for the index, 
constrained to be orthogonal (uncorrelated with the first index), that explains as 
much as possible of the unexplained portion of the variance-covariance matrix. 
Additional principal components are then extracted until the user decides that 
they are picking up random influences in the data rather than real information. 
Of course, a prior estimate of the number of relevant influences will narrow the 
choice of how many principal components to extract. 

To obtain a multi-index model from a principal component solution some 
adjustments are usually performed. First, the indexes obtained from a principal 
components solution have decreasing standard deviations as additional influ- 

l4 Many researchers choose to perform principal component or factor analysis on the 
correlation matrix rather than the variance-covariance matrix. This choice is made because the 
solution is sensitive to the scale of the data. Although historical returns on securities have a 
natural scaling, an analyst may not want the solution to be affected by the difference in volatility 
across securities. 
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ences are extracted. Normally, the indexes are adjusted so the standard 
deviations of all indexes are unity.15 

As additional influences are extracted using principal components analysis, 
the proportion of random noise in the yet-unexplained variance-covariance 
matrix increases. Therefore, each successive principal component is more 
likely to be measuring random influences. 

Principal component analysis has several advantages over other methods of 
extracting factors: 

There is a unique solution. 
The meaning of successive factors is easy to understand. 
The solution technique is simple compared with most other factor 
solution techniques, and a large sample can be used. 
When residual variance across securities is unrelated to factor loadings 
and sample size goes to infinity, the principal component solution is a 
transformation of the factor solution while being solvable (see Connor 
and Korayczk 1986). 

The major weakness of principal component analysis is that it is variance 
oriented rather than covariance oriented. The assumption is that residual 
variance is not related to factor 1oadings.lG 

Factor Analysis 
Factor analysis operates directly on the covariance matrix and produces a 

result that is intuitively appealing, given the nature of multifactor models. A 
number of alternative estimation procedures are available, including maximum 
likelihood, generalized least squares, and unweighted least squares. Most 
analysts use maximum likelihood methods. For any hypothesized number of 
factors, factor analysis finds the indexes and the loadings on each index for each 
security to make the covariance between the unique returns as small as 
possible. 

Although the indexes produced by factor analysis need not be orthogonal to 

l5 In addition, researchers often want to construct the indexes from a larger sample of stocks 
or to have other properties such as being widely diversified. See, for example, Lehrnann and 
Modest (1988). 

l6 For example, in a single-index model, beta has been shown to be positively related to 
residual variance. Thus, a principal components estimation of the single-index model can lead to 
false inferences about beta. 



each other, researchers in this area have generally constructed their solutions 
so that they are orthogonal. Even with the orthogonal constraint, interpreting 
the solution is quite complex. For any given data set, an infinite number of 
equivalent factor solutions are possible, which makes interpreting any particular 
factor very difficult. The information spanned by the multiple-factor solution 
from one sample should be the same as the information spanned by the 
multiple-factor solution from the second sample (except for sampling error). As 
a practical matter, we know what the set of factors from a factor solution 
represents, but we are less sure about the meaning of any individual factor. 

A second drawback to factor analysis is that factor solutions are very difficult 
to estimate and the sample size that can be factor analyzed is limited by the 
length of the return series. Maximum likelihood factor analysis involves a 
complex nonlinear optimization problem. It is sufficiently complex that many 
analysts have resorted to small sample sizes to estimate factors and factor 
loadings. 





Multiple-Factor Models for 
Portfolio Risk 

Richard Grinold 
Ronald N. Kahn 
BARRA 

Multiple-factor models have been applied to forecasting expected returns, as 
well as forecasting risk. This paper will focus on the use of multiple-factor 
models to predict and control portfolio risk rather than on their use to identlfy 
sources of expected return. Portfolio risk depends both on asset risks and on 
correlations; factor models accurately capture both of these characteristics. 
The goals of risk-forecasting models are to help portfolio managers analyze the 
sources of risk in their portfolios; to determine (ex post) if the risks were 
justified; and, with a forecast of expected returns, to build new portfolios that 
have desirable characteristics. 

The emphasis in this paper is on factor models that are relatively easy for 
skilled investment practitioners to interpret and use. Thus, we will stress the 
use of factors that capture familiar investment themes such as value, growth, 
momentum, volatility, and size. We will also stress the use of models that 
quickly adapt to the changing nature of the marketplace, whether the change is 
the merger of U.S. Steel and Marathon Oil, the birth of the Baby Bells, the 
emergence of an electrical utilities industry in the United Kingdom, or a drastic 
reassessment of the earnings prospects for IBM. 

A Brief History of Multiple-Factor Models 
Modem portfolio theory started in the 1950s with Markowitz's (1959) 

statement of the portfolio management problem as one of balancing risk against 
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expected return. He also stressed the role of diversification in reducing portfolio 
risk. In the 1960s, Lintner (1965a, 1965b), Mossin (1966), Sharpe (1964), and 
Treynor (1961) went one step further and proposed a single-factor model for 
the explanation of expected return. In the 1970s, Merton (1972), Rosenberg 
and Marathe (1975), Ross (1976), Sharpe (1977), and others proposed 
multiple-factor models for the explanation of expected returns. In the 1980s, 
academic debate still centered around the issue of expected return-in 
particular, the correct way to explain expected return on financial assets (asset 
pricing). The question was whether current statistical procedures are up to the 
task of recognizing the correct answer if we have it in hand. 

Rosenberg (1974) noted early on that the same procedures used in the 
search for expected returns could also be used to explain portfolio risk. 
Moreover, these efforts had the benefits of being independent of any particular 
theory of expected returns and having practical value. They helped portfolio 
managers deal in a quantitative and effective way with the issue of risk control. 
With the help of a model to handle risk, the managers could then concentrate 
their efforts on the difficult task of finding assets that are potential over- or 
underachievers. 

Multiple-factor risk models of equity returns are mentioned in a host of 
academic papers. They are usually not the focus of the paper, merely a 
technique or an abstract structure made to demonstrate the point. The 
literature on arbitrage pricing theory has made the multiple-factor model a 
standard part of the academic landscape. As is well known, the arbitrage pricing 
theory posits the existence of an unknown number of unidentified factors that 
can be used to explain expected returns. This vague specification has caused 
some scoffing, but it has also opened the door to a tremendous amount of 
creativity in building linear models. The rule seems to be "anything that is not 
forbidden is allowed." Given the wide availability of data, the low cost of 
computation, the human imagination, and the need to publish, attempts to build 
such models have taken widely different approaches. Witness, for example, the 
efforts of Roll and Ross (1980), Chen, Roll, and Ross (1986), Conner and 
Korajczyk (1988), and Lehrnann and Modest (1988). 

The Structure of Multiple-Factor Risk Models 
The multiple-factor risk models described in this paper have a simple linear 

structure composed of four components: a stock's exposures to the factors, its 
excess returns, the attributed factor returns, and the specific returns. For- 
mally, 



where 

X,,,(t) = the exposure of asset n to factor k (known at time t), 
rn(t) = the excess return (return above the risk-free return) on stock n 

during the period from time t to time t + 1, 
fk(t) = the factor return to factor k during the period from time t to time 

t + 1, and 
u,(t) = stock n's specific return during the period from time t to time t + 

1.' This is the return that cannot be explained by the factors. 

The exposures, X,,,, are frequently called factor loadings. For industry 
factors, the exposures are either 1 or 0, indicating whether or not the stock 
belongs to a given industry. For the other common factors, the exposures are 
standardized so that the average exposure over all stocks is 0 and the standard 
deviation across stocks is 1. 

The specific return, u,, is sometimes called the idiosyncratic return to the 
stock. It is the return the model does not explain. The risk model will account 
for specific risk, however, so the risk predictions will explicitly consider the risk 
of U,. 

Equation (1) is not meant to convey any sense of causality. The factors may 
or may not be the basic driving forces for security returns. In our view, they are 
merely dimensions along which to analyze risk. 

Now, assume that the specific returns are not correlated with the factor 
returns and the specific returns are not correlated with each other. With these 
assumptions and the return structure of equation (I), the risk structure is: 

where 

Vn,, = the covariance of asset n with asset m (if n = m, this gives the 
variance of asset n), 

Xn,,, = the exposure of asset n to factor k1, 

Although the model's time structure is defined in equation (I), in the rest of this paper, the 
explicit time variables will be suppressed. 
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F,,,, = the covariance of factor k l  with factor k2 (if k l  = k2, this gives the 
variance of factor kl), and 

A , ,  = the specific covariance of asset n with asset m. By assumption, all 
specific risk correlations are zero, so this term is zero unless n = 
m. In that case, this term gives the specific variance of asset n. 

Building the Model 
The process of building a multiple-factor risk model consists of three phases: 

choosing the factors, estimating factor returns, and forecasting risk. We shall 
examine these in detail. 

Choosing the Factors. The art of building a multiple-factor risk model 
is to choose appropriate factors. This search for factors is limited by one key 
constraint: All factors must be a priori factors. That is, even though the factor 
returns are uncertain, the factor exposures must be known at the beginning of 
the period. 

Within the constraint of a priori factors, a wide variety of factors are 
possible. To classlfy the factors, they are first divided into three categories: 
responses to extemal influences, cross-sectional comparisons of asset at- 
tributes, and purely internal or statistical factors. 

Responses to external influences. One of the prevalent themes in the 
academic literature of financial economics is that a demonstrable link should 
exist between outside economic forces and the equity markets. The response 
factors are an attempt to capture that link. These factors include responses to 
return in the bond market (sometimes called bond beta), unexpected changes in 
inflation ( ia t ion  surprise), changes in oil prices, changes in exchange rates, 
and changes in industrial production. These factors are sometimes called 
macrofactors. BARRA models use this type of factor, in particular in response 
to interest rate changes and, in some countries, response to changes in 
exchange rates. 

These measures suffer from two serious defects. The first is that the 
response coefficient has to be estimated through regression analysis or some 
similar technique. This requirement leads to errors in the estimates, commonly 
called the error-in-variables problem. The second drawback is that the esti- 
mates are based on behavior during a past period, generally five years. Even if 
these past estimates are accurate in the statistical sense of capturing the true 
situation in the past, they may not accurately describe the present. In short, 
these response coefficients can be nonstationary. 

Cross-sectional comparisons. These factors, which have no link to the 
remainder of the economy, compare attributes of the stocks. Cross-sectional 



attributes can themselves be classified in two groups: fundamental and market. 
Fundamental attributes include such ratios as dividend yield and earnings yield, 
plus analysts' forecasts of future earnings per share. Market attributes include 
volatility during a past period, return during a past period, option-implied 
volatility, share turnover, and so forth. 

To some extent, market attributes such as volatility and momentum may 
have the same difficulties (errors in variables, nonstationarity) as the external 
response factors. Here, however, the factor interpretation is somewhat 
different. For example, a momentum factor, taken to be a measure of the price 
performance of the stock for the past 12 months, is not intended as a forecast 
of continued success or of mean reversion. It is merely a recognition that stocks 
that have been relatively successful (unsuccessful) during the past year will 
quite frequently behave in a common fashion. Sometimes the momentum will be 
reinforced, in other times it will be reversed, and in yet other times it will be 
irrelevant. We are accounting for the fact that in five or six months of the year, 
controlling for other attributes, previously successful stocks behave in a much 
different manner than previously unsuccessful stocks. The same is true for 
stocks with high historical volatility and so forth. 

Statistical factors. It is possible to amass returns data on a large number 
of stocks, turn the crank of a statistical meat grinder, and admire the factors the 
machine produces: factor ex machina. This procedure can be accomplished in an 
amazingly large number of ways, including principal component analysis, 
maximum likelihood analysis, and expectations maximization analysis. One can 
use a two-step approach-first get the factors and then the exposures-or 
simultaneously estimate both factors and exposures, or turn the problem on its 
head in the imaginative approach taken by Connor and Korajczyk (1988). 
BARRA models do not usually include statistical factors because they are very 
difficult to interpret and because the statistical estimation procedure is prone to 
discovering spurious correlations. 

Among the many possible factors, those chosen should satisfy three criteria: 
They should be incisive, intuitive, and interesting. Incisive factors differentiate 
returns. For example, low-volatility stocks perform differently from high- 
volatility stocks at least three times a year. If the overall volatility exposure is 
not monitored, then returns can be upset with disturbing frequency. 

Intuitive factors relate to interpretable and recognizable dimensions of the 
market. Credible stories define these factors. For example, size has the big 
companies at one end and the small companies at the other. Momentum has the 
firms that have performed well separated from the firms that have done 
relatively poorly. Intuitive factors arise from recognizable investment themes. 
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Factors in the U.S. equity market include industries, size, yield, value, success, 
volatility, growth, leverage, liquidity, foreign income, and labor sensitivity. 

Interesting factors explain some part of performance. We can attribute a 
certain amount of return to each factor in each period. That factor might help 
explain exceptional return or beta or volatility. For example, large stocks did 
well over a particular period, or high-volatility stocks are high-beta stocks. 

Research leading to the appropriate factors, then, depends both on statistical 
techniques and on investment intuition. statistical techniques can idenbfy the most 
incisive and interesting factors. Investment intuition can help idenbfy intuitive 
factors. Factors can have statistical signdicance or investment significance or both. 
Model research must take both forms of significance into account. 

Exposures. The factors typically chosen for use in a multiple-factor risk 
model fall into two broad categories: industries and risk indexes. Industry 
factors measure the differing behavior of stocks in different industries. Risk 
indexes measure the differing behavior of stocks across other, nonindustry 
dimensions. 

Industly exposures. Industry groupings partition stocks into nonoverlap- 
ping classes. Industry groupings should satisfy several criteria. They should 
represent a reasonable number of companies in each industry, have a reason- 
able fraction of capitalization in each industry, and be in reasonable accord with 
the conventions and mind-set of investors in that market. 

Industry exposures are usually 110 variables, because stocks are either in an 
industry or they are not. The market itself has unit exposure in total to the 
industries. Because large corporations can do business in several industries, the 
industry factors must account for multiple industry memberships. For example, 
for March 1992, BARRA's USE2 model classifies General Electric as 39 
percent producer goods, 28 percent aerospace, 23 percent consumer products, 
5 percent miscellaneous finance, and 5 percent media. 

Risk index exposures. Industries are not the only sources of stock risk. 
Risk indexes measure the movements of stocks exposed to common invest- 
ment themes. Risk indexes we have identified in the United States and other 
equity markets fall into these broad categories: . 

Volatility distinguishes stocks by their volatility. Assets that rank high in 
this dimension have been and are expected to be more volatile than 
average. 
Momentum distinguishes stocks by recent performance. 
Size distinguishes large stocks from small stocks. 
Liquidity distinguishes stocks by how often their shares trade. 
Growth distinguishes stocks by past and anticipated earnings growth. 



Value distinguishes stocks by their fundamentals, including ratios of 
earnings, dividends, cash flows, book value, and sales to price; is the 
stock cheap or expensive relative to fundamentals? 
Earnings volatility distinguishes stocks by their earnings stability. 
Financial leverage distinguishes firms by their debt-to-equity ratios and 
exposure to interest rate risk. 

Any particular equity market can contain fewer or more risk indexes, depending 
on its own idiosyncrasies. 

Each of the broad categories listed above can contain several specific 
measurements, or descriptors, of the category. For instance, volatility measures 
might include recent daily return volatility, option-implied volatility, recent price 
range, and beta. Although the descriptors are typically correlated, each 
captures one aspect of the risk index. We construct risk index exposures by 
weighting exposures of the descriptors within the risk index. The weights are 
chosen to maximize the model's explanatory power. Relying on several different 
descriptors can improve model robustness. 

The various categories of descriptors and risk indexes involve different sets 
of natural units and ranges. To quantlfy them, all raw exposure data must be 
rescaled: 

where mean (X,,,) is the raw exposure value mean and SDCX,,,) is the raw 
exposure value standard deviation across the universe of assets. The result is 
that each risk index exposure has a mean of zero and a standard deviation of 1. 
This standardization also facilitates the handling of outliers. 

As an example of how this procedure works, BARRA's USE2 model assigns 
General Motors a size exposure of 1.30 for March 1992. Thus, on the size 
dimension, General Motors lies sigdicantly above average. For the same date, 
the model assigns Apple Computers a size exposure of -0.26. On this 
dimension, Apple Computers lies somewhat below average. 

Factor Returns. Given exposures to the industry and risk index factors, 
the next step is to estimate returns via multiple regressions. This procedure 
was developed in Fama-MacBeth (1973). The model is linear, and equation (1) 
has the form of a multiple regression. Stock excess returns are regressed 
against factor exposures, choosing factor returns that minimize the (possibly 
weighted) sum of squared specific returns. For the United States, we use a 
universe of 1,100 of the largest companies. The R2 statistic, which measures 



A Practitioner's Guide to Factor Models 

the explanatory power of the model, tends to average between 30 percent and 
40 percent for models of monthly equity returns with roughly 1,000 assets and 
50 factors. Larger R' statistics tend to occur in months with larger market 
moves. 

In this cross-sectional regression, which is performed every period, gener- 
ally one month, the industry factors play the role of intercepts. The market as 
a whole has an exposure of 1 to the industries, and industry factor returns tend 
to pick up the market return. They are the more volatile factors in the model. 
The market has close to zero exposure to the risk indexes, and risk index factor 
returns pick up extra-market returns. They are the less volatile factors in the 
market. 

To estimate factor returns efficiently, we run generalized least squares 
regressions, weighting each observed return by the inverse of its specific 
variance. In some models, we instead weight each observation by the square 
root of its market capitalization, which acts as a proxy for the inverse of its 
specific variance. 

Although these cross-sectional regressions can involve many variables (the 
USE2 model uses 68 factors), the models do not suffer from multicollinearity. 
Most of the factors are industries (55 out of 68 in USEZ), which are orthogonal. 
In addition, tests of variance inflation factors, which measure the inflation in 
estimate errors attributable to multicollinearity, lie far below serious danger 
levels. 

Factor Portfolios. The regression approach to estimating factor returns 
leads to an insightful interpretation of the factors. Weighted regression 
gymnastics lead to the following matrix expression for the estimated factor 
returns: 

where X is the exposure matrix, W is the diagonal matrix of regression weights, 
and r is the vector of excess returns. For each particular factor return, this 
calculation is simply a weighted sum of excess returns: 

Our research has shown that the square root is the appropriate power of market capitalization 
to mimic inverse specific variance. Larger companies have lower specific variance, and as 
company size doubles, market variance shrinks by a factor of 0.7. 



In this form, each factor return, f,, can be interpreted as the return to a 
portfolio with portfolio weights c, ,. So factor returns are the returns to factor 
portfolios. The factor portfolio hoidings, which are known a priori, ensure that 
the portfolio has unit exposure to the particular factor, zero exposure to every 
other factor, and minimum risk, given those constraints. 

These portfolios have two different interpretations. They are sometimes 
interpreted as factor-mimicking pot@olios, because they mimic the behavior of 
some underlying basic factor. We interpret them more simply as portfolios that 
capture the specific effect we have defined through our exposures. 

Factor portfolios typically contain both long and short positions. For 
example, the factor portfolio for the earnings-to-price factor in the U.S. market 
will have an earnings-to-price ratio that is one standard deviation above the 
market while having zero exposure to all other factors. A zero exposure to an 
industry implies that the portfolio will hold some industry stocks long and others 
short, with longs and shorts balancing. This portfolio will contain every single 
asset with some weight. 

Factor Covariance and Specific-Risk Matrixes. Once the factor 
returns each period are estimated, we can estimate a factor covariance 
matrix-an estimate of all the factor variances and covariances. To operate 
effectively as a risk model, this factor covariance matrix should constitute our 
best forecast of future factor variances and covariances over the investor's time 
horizon. 3 

Generating an asset-by-asset covariance matrix requires both the factor 
covariance matrix, F, and the specific risk matrix, A. By definition, a stock's 
specific return, un, is that component of its return that the model cannot 
explain. So the multiple-factor model can provide no insight into stock-specific 
returns. For specific risk, we need to model specific return variance, u: 
assuming that mean specific return is zero. 

In general, the model for specific risk is 

with 

Forecasting covariance from a past history of factor returns is a subject worthy of a paper in 
itself, and the details are beyond the scope of this effort. Basic techniques rely on weights over 
the past history and Bayesian priors on covariance. More advanced techniques include forecasting 
variance conditional on recent events, as first suggested by Engle (1982). Such techniques 
assume that variance is only constant conditional on other variables. For a review of these ideas, 
see Bollerslev et al. (1992). 
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and 

S(t) measures the average specific variance across the universe of stocks, and 
vn captures the cross-sectional variation in specific variance. 

To forecast specific risk, we use a time series model for S(t) and a linear 
multiple-factor model for vn(t). Models for vn(t) typically include some risk index 
factors, plus factors measuring recent squared specific returns. The time 
dependence in the model of v,(t) is captured by time variation in the exposures. 
One pooled regression over assets and time periods, with outliers trimmed, is 
used to estimate model coefficients. 

Data Requirements. Multiple-factor risk models require data on stock 
returns and sufficient data to calculate factor exposures. Calculating stock 
returns requires not only stock price data but also data on stock dividends, 
splits, and other adjustments. Factor exposures require industry identification, 
including earnings, sales, and assets segmented by industry; historical returns; 
associated option information; fundamental accounting data; and earnings 
forecasts. 4 

Model Validity 
Considerable evidence supports the validity of multiple-factor risk models. 

This evidence falls into three categories: in-sample tests, out-of-sample tests, 
and empirical observations. 

In-sample tests focus on the performance of the multiple-factor model 
(equation 1) in explaining excess stock returns. Typically, these models will use 

BARRA's USE2 model started in January 1973 and, for initial estimation, required data 
covering the period from January 1968 through December 1972. This model relies mainly on 
MARKET PLUS for market data, COMPUSTAT for fundamental accounting data, and IBES for 
earnings forecasts, but it also requires data from many other sources, including Standard & 
Poor's, the New York Stock Exchange, the American Stock Exchange, Value L i e ,  and 
Interactive Data Corporation. 



roughly 50 factors to explain the returns to roughly 1,000 assets each month. 
Monthly R2 statistics for the models average about 30-40 percent, meaning 
that the model "explains," on average, about 30-40 percent of the observed 
cross-sectional variance of the universe of stock returns. 

These R2 statistics, averaged over many months, do not accurately convey 
model performance, however. In fact, the R2 statistic can vary quite signifi- 
cantly from month to month, depending in part on the overall market return. 
Model R2 statistics are highest when the market return differs very signdicantly 
from zero. The R2 statistic was very high in October 1987 because the market 
return was so extreme. In months when the market return is near zero, the R2 
statistic can be quite low, even if discrepancies between realized and modeled 
returns are small. 

Another measure of model performance is the root mean square error from 
the regression. This averages 6 percent for monthly cross-sectional returns in 
the United States and does not vary much from month to month. Because 
monthly stock volatility in the United States averages 10 percent, the model 
explains about 64 percent of individual stock variance, on average. 

Because the goal of the model is to explain portfolio risk, a better way to 
evaluate the model is by the fraction of portfolio risk it explains, and here is 
evidence of the model's true power. For benchmark portfolios in the United 
States, the multiple-factor risk model explains more than 98 percent of portfolio 
variance. 

Out-of-sample tests compare forecast risk with realized risk. One out-of- 
sample test builds portfolios of randomly chosen assets and then compares the 
forecast and realized active risk of those portfolios; active risk is defined as the 
volatility of the active return, or the difference between the portfolio return and 
a benchmark return. In tests in the United States involving 500 such portfolios 
containing 100 assets each, we compared realized active risk for a 12-month 
period with forecast active risk at the beginning of the 1988-91 period, using 
the S&P 500 as the benchmark. At the 1 percent confidence level, we could 
reject the hypothesis that forecast variance equaled realized variance only 2.8 
percent of the time. 

We have also examined risk forecasts cross-sectionally. With the same 500 
portfolios, we examined standardized active returns: ratios of realized active 
returns to forecast active risk. Pooled over four months, the standard deviation 
of standardized active returns was 1.06, which according to X2 tests, was 
statistically consistent with the unbiased result of 1.0. 

Finally using a variance-forecasting test suggested by Engle, Hong, and 
Kane (1990), we have run options-based tests comparing multiple-factor risk 
model forecasts with historical asset-by-asset risk. In these tests, we construct 
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30 random portfolios of 100, 150, 200, and 250 assets and generate the two 
forecasts of active risk. We then use the Black-Scholes model to price 
one-month at-the-money options on portfolio active value based on these two 
forecasts. We create a synthetic market in these options, trading at the mean 
price. At the end of the period, we calculate profit and loss. Over a 36-month 
period from January 1988 through December 1990, the strategy using the 
multiple-factor risk model forecasts, on average, returned 37 basis points per 
option traded with the historical volatility trader, with a standard deviation of 
134 basis points. In this zero-sum game, the strategy based on historical 
volatility lost 37 basis points per option traded. 

In both in-sample and out-of-sample tests of model validity, we occasionally 
invoke standard distributional assumptions to interpret the statistical sigmfi- 
cance of the results. Also, in both model building and testing, we make use of 
Monte Carlo simulations to test statistical sigmficance while relaxing the 
required assumptions. As to investment sigmficance, if some event occurs 3 
times out of 12, an investor would want to know about it, even if a statistician 
would not be sure of its importance at the 95 percent confidence level. 

Empirical observations concerning model validity are more vague than 
statistical tests, but they are still relevant. Simply put, these models success- 
fully make use of intuitive factors to predict risk and understand return, and 
they have been widely accepted by the investment community for those roles 
for 18 years now. 

How do multiple-factor risk models compare with their existing alternatives? 
Historical asset-by-asset covariance matrixes consistently underperform multi- 
ple-factor models in risk forecasting, and they suffer from severe estimation 
problems. A covariance matrix for 1,000 assets contains 500,500 independent 
entries, all estimated with errors. In addition, unless estimated over more than 
1,000 time periods, the covariance matrix will not be full rank. 

Simpler versions of the multiple-factor approach include a one-factor model 
and a constant-correlation model. The one-factor model is a close relative of the 
capital asset pricing model. This model includes only one common factor-the 
market. The constant-correlation model assumes that all assets exhibit the 
same correlation. Both models are simple and helpful for "quick and dirty" 
applications but ignore linkages among stocks in specific industries and with 
similar attributes. 

Another approach to risk modeling uses statistical factor analysis. This 
approach identifies factors based on past correlations between asset returns. 
These factors are typically not intuitive or recognizable. This statistically driven 
approach can lead to risk forecasts comparable in quality to multiple-factor risk 



model forecasts but without any of the insight. Also, because they do not rely 
on investor intuition, they can be less robust than multiple-factor models. 

Overall, multiple-factor risk models outperform all alternative risk models in 
providing incisive, intuitive, and interesting risk analysis. 

Applications of Multiple-Factor Risk Models 
The technical core of a multiple-factor risk model is the attribution of asset 

returns to chosen common factor and specific returns, plus forecasts of the 
variances and covariances of these common factor and specific returns. This 
technical core supports three separate types of investment analysis, which 
focus on the present, the future, and the past. 

The Present: Current Portfolio Risk Analysis. The multiple-factor 
risk model decomposes current, overall portfolio risk in several ways. This 
decomposition of risk identifies the important sources of risk in the portfolio and 
links those sources with aspirations for active return. 

One way to divide the risk is to identlfy the market and the residual 
components. An alternative is to look at risk relative to a benchmark and 
identlfy the active risk. A third way to divide the risk is between the model risk 
and the specific risk. The risk model can also perform marginal analysis, 
identlfylng which assets, at the margin, are most and least diverslfylng in the 
portfolio. 

Risk analysis is important for both passive management and active manage- 
ment. Passive managers attempt to match their portfolio returns to a particular 
benchmark. They run index funds, but depending on the benchmark, the 
passive managers' portfolios may not include all the stocks in the benchmark. 
For example, a passive small-stock manager might face prohibitive transaction 
costs for holding the thousands of assets in a broad small-stock benchmark. 
Current portfolio risk analysis can tell a passive manager the active risk, or 
tracking error, of a portfolio relative to its benchmark. The tracking error is the 
volatility of the difference in return between the portfolio and the benchmark. 
Passive managers want minimum tracking error. 

The goal of active managers is not to track the benchmark as closely as 
possible but to outperform the benchmark. Still, risk analysis is important in 
active management, to focus active strategies. Active managers want to take on 
risk only along those dimensions they believe they can outperform. 

By suitably decomposing current portfolio risk, active managers can better 
understand the positioning of their portfolios. Risk analysis can tell them not 
only what their active risk is but also why and how to change it. Risk analysis 
can classlfy active bets into inherent bets, intentional bets, and incidental bets: 
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Inherent bets. An active manager who is trying to outperform a bench- 
mark (or the market) will have to bear the benchmark risk. This risk is a 
constant part of the task, not under the portfolio manager's control. 

Intentional bets. An active portfolio manager has identified stocks that he 
believes will do well and stocks that he believes will do poorly. The manager 
should expect that these stocks will appear as important marginal sources of 
active risk. This is welcome news: It tells the portfolio manager that he has 
taken active positions that are consistent with his beliefs. 

Incidental bets. These are unintentional side effects of a manager's active 
position. The manager has inadvertently created an active position on some 
factor that is a significant contributor to marginal active risk. For example, a 
manager who builds a portfolio by screening on yield will find a large incidental 
bet on industries that have higher than average yields. Are these industry bets 
intentional or incidental? Incidental bets often arise through incremental port- 
folio management, where a sequence of stock-by-stock decisions, each plausible 
in isolation, leads to accumulated incidental risk. 

TABLE 1. Sample Portfolio 

Stock Shares Weight 

American Express 
AT&T 
Chevron 
Coca Cola 
Walt Disney Productions 
Dow Chemicals 
DuPont 
Eastman Kodak 
Exxon 
General Electric 
General Motors 
IBM 
International Paper 
Johnson &Johnson 
McDonalds 
Merck 
Minnesota Mining and Manufacturing 
Philip Morris 
Procter & Gamble 
Sears 



To understand portfolio risk characterization more concretely, consider the 
following problem: Using as an investment portfolio the Major Market Index 
(MMI), a price-weighted index of 20 of the largest U. S. stocks, analyze its risk 
relative to the S&P 500 as of February 28, 1992. The portfolio's composition is 
given in Table 1. 

Comparing risk factor exposures against the benchmark, this portfolio 
contains larger, less volatile stocks with higher leverage and foreign income and 
lower earnings variability-what one might expect from a large-stock portfolio 
versus a broader index. The portfolio also contains several industry bets. 

The multiple-factor risk model forecasts 21.3 percent volatility for the 
portfolio and 20.8 percent volatility for the index. The portfolio tracking error is 
4.7 percent. Assuming that active returns are normally distributed, the portfolio 
annual return will lie within 4.7 percent of the index annual return roughly 
two-thirds of the time. The model also can forecast the portfolio's beta-its 
exposure to movements of the index. Beta measures the portfolio's inherent 
risk. The MMI portfolio beta is 1.02. This implies that if the S&P 500 exceeded 
its expected return by 100 basis points, we would expect the portfolio return to 
exceed its expected return by 102 basis points. 

The mar@ contribution to tracking error-the increase in tracking error 
from a 1 percent increase in asset holding financed by a 1 percent decrease in 
cash-can be used to determine the most and least diversify~ng assets. A more 
detailed treatment of marginal contribution to tracking error is found in the 
mathematical appendix to this paper. 

In this example, increasing the holdings in American Express would do most 
to reduce risk, and increasing holdings in Merck would do the most to 
concentrate the portfolio. These are also the lowest and highest weighted 
assets in the portfolio. 

Looking Forward: Portfolio Construction. Given forecasts of ex- 
pected returns, a multiple-factor risk model can help construct investment 
portfolios that optimally implement bets on those returns. The idea is to 
maximize utility, defined as risk-adjusted expected return: 

Here, h, is the holding of asset n, r, is the expected return to asset n, and A 
is a risk aversion parameter. The covariance, V,,,, comes from the multiple- 
factor risk model. In typical examples, the holdings are active holdings relative 
to a benchmark and the expected returns are exceptional returns (alphas) 
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relative to the benchmark. The quadratic optimization problem is solved to 
determine the optimal portfolio weights. Of course, in real life, the problem 
must account for transaction costs and add constraints and penalties. 

Beyond providing risk forecasts, multiple-factor risk models can occasionally 
help with return forecasts. Although this is not the main focus of this type of 
model, the research needed to choose factors can identlfy those that generate 
exceptional return; value factors, for example, often generate exceptional 
return. Portfolios that implement such bets on factors are called tilt funds. 

In portfolio construction, we assign forecasts of exceptional return to the 
stocks in the MMI portfolio and then optimally weight them to maximize 
risk-adjusted exceptional return relative to the S&P 500. In the portfolio shown 
in Table 2, we arbitrarily assigned 2 percent exceptional return forecasts to 
those stocks with ticker symbols that fell in the top half of the list alphabetically 
and -2 percent forecasts to the rest. The optimization procedure constructs a 
reweighted portfolio. 

The alphas shown in Table 2 imply an initial portfolio alpha of -0.19 percent. 

TABLE 2. Portfolio Construction Example 

Stock Alpha Shares Weight 

American Express 
AT&T 
Chevron 
Coca Cola 
Walt Disney Productions 
Dow Chemicals 
DuPont 
Eastrnan Kodak 
Exxon 
General Electric 
General Motors 
IBM 
International Paper 
Johnson & Johnson 
McDonalds 
Merck 
Minnesota Mining and Manufacturing 
Philip Morris 
Procter & Gamble 
Sears 



With this reweighting, the tracking error moves slightly, from 4.68 percent to 
4.71 percent, and the alpha of the portfolio moves to 1.21 percent. For reasons 
of risk control, the optimizer cannot eliminate the holdings of all the negative 
alpha stocks, but it does reduce those holdings and eliminates three of them 
from the portfolio. 

The Past: Performance Analysis. Historical analysis of investment 
performance is important for understanding realized investment performance 
and for backtesting new investment strategies. Over any one period, the model 
can attribute returns to the factors and to specific asset returns. Then, linking 
many periods of attributed returns, it can analyze the series of returns to these 
various bets. This helps measure investment skill and value added. 

Within the factor structure of the model, past returns can be attributed to 
bets on factors and bets on specific asset returns. For each historical period, we 
know the exposures of the portfolio relative to its benchmark, as well as the 
subsequent factor and specific returns. By examining many such periods, we 
can aggregate returns attributed to each factor and returns attributed to specific 
asset bets. With this time series of attributed returns, we can observe mean 
achieved returns. This time series, as well as the model itself, leads to 
estimates of the risk associated with those returns. 

For example, we can compare the performance of the S&P 500 portfolio 
with the BARRA ALL-US Index, a broad index of more than 5,000 stocks, for 
the 65 months from September 30, 1986, through February 28, 1992. The S&P 
500 outperformed the BARRA Index by 92 basis points a year, with an 
annualized risk of 2.78 percent. Decomposition of this risk and return by source 
shows that most of this active return arose from bets on the common factors: 

Annual Return Annual risk 

Active common factors 
Specific asset selection 
Market timing - 

Given the large numbers of stocks in the portfolio, very little of the active return 
arose from specific asset selection. The market-timing component measures 
return contributions attributable to variation in portfolio beta over the time 
period. The beta of the S&P 500 versus the BARRA ALL-US was 0.97 in 
March 1992, but it does vary over time. The market-timing contribution of - 13 
basis points arises because that beta tended to be above its mean value in 
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months when the BARRA Index excess return was below its mean value, and 
vice versa. 

Among all the bets (policies) included in the S&P portfolio but in not the 
BARRA ALL-US benchmark, the best performing was a positive bet on foreign 
income, which gained 28 basis points a year; the worst performing was the size 
bet, which lost 29 basis points a year during this period. 

Two particular statistics can help assess the skill and value added of the S&P 
portfolio. Letting Ram,,, represent annualized returns and M represent the 
number of observation periods, the t-statistic for the mean return is: 

This statistic measures whether the observed mean annualized return differs 
sigmficantly from zero. It is one statistical measure of investment skill. If the 
t-statistic exceeds 2.0 and returns are normally distributed, then the probability 
that simple luck generated these returns is less than 5 percent. 

Related to this distinction between skill and luck is the question of whether 
the manager has added investment value. The utility defined in equation (9) can 
be used to measure value added, or risk-adjusted active return. Detailed 
analysis shows that value added rises in proportion to the square of the 
manager's information ratio, IR, or the ratio of annual active return, a,,,,, to 
annual active risk, o,,,: 

2 

vAma = A(%) , 
4A '"annual 

with 

aannual 
IR=-. 

'"annual 

Value added rises with the manager's information ratio, regardless of the level 
of risk aversion. 

If the M periods of observation of these returns correspond to T years, then 
the information ratio is just the t-statistic divided by the square root of the 
number of years of observation: 

t-stat 

I R = 6  



Overall, the t-statistic measures the statistical sigtllficance of the return, but the 
information ratio also captures the risk-reward trade-off of the strategy and the 
manager's value added.5 An information ratio of 0.5 observed over five years 
may be statistically more significant than an information ratio of 0.5 observed 
over one year, but the value added will be equal. The distinction between the 
t-statistic and the information ratio arises because the definition of value added 
is based on risk over a particular horizon, in this case one year. 

Using the results of single-period performance attribution over M periods, 
this analysis of skill and value added can be applied factor by factor. This process 
will identlfy not only whether the manager has overall skill and has added value 
but also where the manager has skill and has added value. The result is a precise 
analysis of the manager's style. For the example above, the information ratios 
and t-statistics for each component of active return are as follows: 

Information 
Ratio t-statistic 

Active common factors 
Specific asset selection 
Market timing 

Other Uses of Multiple-Factor Models. Portfolio managers are not 
the only users of multiple-factor risk models. Researchers, plan sponsors, and 
traders also find them helpful. Investment researchers use multiple-factor risk 
models to run controlled backtests of future investment strategies. For this, 
their needs are similar to those of portfolio managers. They need to implement 
strategies optimally on historical data and understand the subsequent perfor- 
mance of those strategies. Researchers can use backtests to enhance their 
strategies. They can also use performance analysis and portfolio risk charac- 
terization to improve their understanding of the bets they are testing. 

Pension plan sponsors can use multiple-factor risk models to coordinate their 
multiple managers. Portfolio risk characterization allows them to understand 
any gaps or overlaps among their managers or in their asset allocation mixes. 
Plan sponsors also use performance analysis to assess their managers' value 
added and to check on their managers' styles. 

Traders can use multiple-factor models in at least two ways. The models can 
aid in risk control during the course of trading. Multiple-factor models can also 

For a more detailed discussion of the information ratio and its relationship to  skill and value 
added, see Grinold (1990). 
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aid in index arbitrage strategies through their use in constructing small baskets 
of stocks to track index futures optimally. 

Conclusions 
Multiple-factor risk models perform well in predicting investment risk and 

providing investment intuition. Across many asset classes and markets, these 
models identlfy incisive, intuitive, and important common factors affecting risk 
and return. They use intuitive, easy-to-understand factors to analyze invest- 
ment risk and returns. They accurately forecast investment risk and help 
explain past returns, but they do not forecast returns. 

Multiple-factor risk models can be used to analyze current portfolio risk, 
construct portfolios that optimally trade off risk with expected returns, and 
analyze skill and value added associated with past returns. They are an 
important tool for managing portfolios, conducting investment research, coor- 
dinating multiple managers, and trading. 

Portfolio managers use multiple-factor risk models to (1) analyze their 
current risk and understand the size and location of their bets, (2) construct 
portfolios that optimally trade off risk against expected returns, and (3) analyze 
and provide insight into their past returns in order to understand their skill and 
value added. Researchers use multiple-factor risk models in similar ways to 
backtest and fine-tune strategies. Pension plan sponsors use multiple-factor risk 
models to coordinate their multiple managers and to understand gaps and 
overlaps in their asset allocation mixes. Traders use these models to control 
investment risk over short horizons. 

Multiple-factor risk models are central to structured investing and are also 
extremely useful for traditional investment processes. Whether investors 
structure their portfolios within a strict risk-return framework or whether they 
simply pick stocks according to tradition, multiple-factor risk models help 
control and understand risk and also help understand past performance. 



Appendix A 

The risk model in matrix notation is written as 

where r is an N vector of a stock's excess returns, X is an N by K matrix of 
stock factor exposures, f is a K vector of factor returns, and u is an N vector 
of specific returns. 

We assume: 

the specific returns, u, are uncorrelated with the factor returns, f; that 
is cov{u,, f,} = 0 for all n and k. 
the covariance of stock n's specific return, u,, with stock m's specific 
return, urn, is 0, if m # n; that is, cov{u,, urn} = 0 if m # n. 

With these assumptions, we can express the N by N covariance matrix, V, of 
stock returns as: 

where F is the K by K covariance matrix of the factor returns and A is the N 
by N diagonal matrix of specific variance. 

A portfolio, P ,  is described by an N-element vector, hpl that gives the 
portfolio's holdings in the N risky assets. The factor exposures of P are given 
by: 

The variance of P is given by: 

A similar formula lets us calculate active variance. If h, is the benchmark 
holdings vector, then we can define: 
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and 

Notice that we have separated both total and active risk into common factor and 
specific components. This method works because factor risks and specific risks 
are uncorrelated. 

We can also examine the marginal effects of any change in the portfolio. This 
type of sensitivity analysis allows us to see what factors and assets have the 
largest impact on risk. The marginal impact on risk is measured by the partial 
derivative of the risk with respect to the asset holding. 

We can compute these marginal contributions for total risk and active risk. 
The N vector of marginal contributions to total risk is: 

VhP MCTR = -. 
UP 

The MCTR(n) is the partial derivative of up with respect to hp(n). We can think 
of it as the change in portfolio risk given a 1 percent increase in the holding of 
asset n, which was financed by decreasing the cash account by 1 percent. The 
cash holding, hp(0), is given by: 

In a similar way, we can define the marginal contribution to active risk as: 

VhA 
MCAR = -. 

V A  
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