Curriculum Errata Notice
 2024 Level I CFA Program

UPDATED 8 MARCH 2024

This document outlines the errors submitted to CFA Institute that have been corrected.
Due to the nature of our publishing process, we may not be able to correct errors submitted after 1 September 2024 in time for the publication of the following year's print materials. However, we update all errors in the Learning Ecosystem (LES) and in this document at the end of each month.

We recommend checking either the LES or this document regularly for the most current information. Depending on when you purchase the print materials, they may or may not have the errors corrected

Table of Contents

Contents
Quantitative Methods 4
Rates and Returns 4
The Time Value of Money in Finance. 6
Statistical Measures of Asset Returns. 7
Portfolio Mathematics 8
Hypothesis Testing. 9
Parametric and Non-Parametric Tests of Independence 9
Simple Linear Regression 10
Economics 11
Monetary Policy. 11
Portfolio Management 12
Portfolio Risk and Return: Part I. 12
Portfolio Risk and Return: Part II. 12
Working Capital and Liquidity. 13
Analyzing Balance Sheets 13
Corporate Issuers 14
Capital Structure. 14
Working Capital and Liquidity 14
Financial Statement Analysis 15
Analysis of Income Tax 15
Analyzing Statements of Cash Flows I 15
Analyzing Statements of Cash Flows II 16
Analysis of Inventories 16
Financial Statement Modeling 17
Equity Investments.17
Company Analysis: Past and Present 17
Equity Valuation: Concepts and Basic Tools 18
Fixed Income. 18
Yield and Yield Spread Measures for Fixed-Rate Bonds 18
Yield and Yield Spread Measures for Floating-Rate Instruments 19
The Term Structure of Interest Rates: Spot, Par, and Forward Curves 21
Interest Rate Risk and Return 22
Yield-Based Bond Duration Measures and Properties 23
Yield-Based Bond Convexity and Portfolio Properties 24
Curve-Based and Empirical Fixed-Income Risk Measures 25
Credit Risk. 27
Mortgage-Backed Security (MBS) Instrument and Market Features. 29
Derivatives 29
Arbitrage, Replication, and the Cost of Carry in Pricing Derivatives 29
Pricing and Valuation of Futures Contracts 30
Option Replication Using Put-Call Parity 31
Alternative Investments 32
Alternative Investment Features, Methods, Structures 32
Alternative Investment Performance and Returns. 33
Ethical and Professional Standards 36
Guidance for Standards I-VII 36
Ethics Application 36

Quantitative Methods
 Rates and Returns

Lesson	Location	PDF Pg	Revised	Correction	
Rates Of Return	Holding Period Return	9	31 Jan 2024	Replace: For example, an analyst may need to compute a one-year holding period return from three annual returns. In that case, the oneyear holding period return is computed by compounding the three annual returns...	With: For example, an analyst may need to compute a three-year holding period return from three annual returns. In that case, the three-year holding period return is computed by compounding the three annual returns...
Rates Of Return	Equation 14		$\begin{gathered} 8 \text { March } \\ 2024 \end{gathered}$	Replace: (1+real return) $=$ (1+ real risk-free rate)(1+ risk premium) / (1+ inflation premium)	With: $(1+$ real return $)=$ (1+real risk-free rate)(1+risk premium)
Rates Of Return	Example 7	16	31 Jan 2024	The following paragraph should appear before the example:	The harmonic mean only works for non-negative numbers, so when working with returns that are expressed as positive or negative percentages, we first convert the returns into a compounding format, assuming a reinvestment, as ($1+R$), as was done in the geometric mean return calculation, and then calculate ($1+$ harmonic mean), and subtract 1 to arrive at the harmonic mean return.
Money- Weighted and Time-Weighted Return	Example 8, Question 4	23	$\begin{aligned} & 8 \text { March } \\ & 2024 \end{aligned}$	Replace the sum in the second calculation: 1.1471	With: 1.1476

Lesson	Location	PDF Pg	Revised	Correction
Annualized Return		29	8 March 2024	Starting on page 29, the equation numbers do not match up with the equation numbers referenced in the text. For example, on page 29, the equation is labeled as equation " 7 " but the text below it refers to it as "Equation $8 . "$ Each subsequent reference to an equation in the text should be one number less than written for the rest of the learning module. For example, "Equation 9" should be "Equation 8 " and "Equation 10" should be "Equation $9 . "$

Quantitative Methods

The Time Value of Money in Finance

Lesson	Location	PDF Pg	Revised	Correction	
Time Value of Money in Fixed Income and Equity	Example 2, Question 1	51	$\begin{gathered} 8 \text { March } \\ 2024 \end{gathered}$	Replace: $\begin{aligned} & \text { PV = EUR100 } \\ & =\frac{2}{1.20}+\frac{2}{1.02^{2}}+\frac{2}{1.02^{3}}+\frac{2}{1.02^{4}}+\frac{2}{1.02^{5}}+\frac{2}{1.02^{6}}+\frac{2}{1.02^{7} .} \end{aligned}$	With: $\begin{aligned} & \text { PV = EUR100 } \\ & =\frac{2}{1.20}+\frac{2}{1.02^{2}}+\frac{2}{1.02^{3}}+\frac{2}{1.02^{4}}+\frac{2}{1.02^{5}}+\frac{2}{1.02^{6}}+\frac{102}{1.02^{7} .} \end{aligned}$
Time Value of Money in Fixed Income and Equity	Example 2, Question 2 and Solution 2	51	$\begin{gathered} 31 \mathrm{Jan} \\ 2024 \end{gathered}$	Question 2 should begin: The solution to Question 2 should read:	Next, let's assume that, exactly two years later, a sharp rise.... 3.2876 percent In this case, we must solve for r using Equation 6, with PV equal to 93.09, as follows: $\begin{aligned} & P V=93.091=2 /(1+r)+2 /(1+r)^{2}+2 /(1+r)^{3}+2 /(1+r)^{4}+2 /(1+r)^{5}+ \\ & 102 /(1+r)^{6} . \end{aligned}$ Here we may use the Microsoft Excel or Google Sheets RATE function (RATE (6,2,93.091,100,0,0.1)) to solve for r of 3.2876 percent. Investors in fixed coupon bonds face a capital loss when investors expect a higher YTM.

Lesson	Location	PDF Pg	Revised	Correction	
Time Value of Money in Fixed Income and Equity	Exhibit 6	58	$\begin{gathered} 31 \text { Jan } \\ 2024 \end{gathered}$	Within the exhibit, the bar representing the fifth year is incorrectly labeled. The exponent 4 should be 3 , so replace this expression on top of the bar: $\mathrm{D}\left(1+\mathrm{g}_{\mathrm{s}}\right)^{4}\left(1+\mathrm{g}_{\mathrm{I}}\right)^{2}$	With: $\mathrm{D}\left(1+\mathrm{g}_{\mathrm{s}}\right)^{3}\left(1+\mathrm{g}_{\mathrm{l}}\right)^{2}$
Time Value of Money in Fixed Income and Equity	Example 7, Question 2	59	$\begin{gathered} 31 \mathrm{Jan} \\ 2024 \end{gathered}$	Replace: We may solve for D4 as GBP1.894 (=1.787 $\times 1.02=\mathrm{D} 3(1+\mathrm{g})$) and the second expression to be GBP9. 22 as follows: $\text { GBP9.22 }=\frac{1.894 /(0.15-0.02)}{(1.15)^{3}}$	With: We may solve for D4 as GBP1.823 (=1.787 $\times 1.02=\mathrm{D} 3(1+\mathrm{gl})$) and the second expression to be GBP9.22 as follows: $\text { GBP9.22 }=\frac{1.823 /(0.15-0.02)}{(1.15)^{3}} .$

Quantitative Methods

Statistical Measures of Asset Returns

Lesson	Location	PDF Pg	Revised	Correction	
Measures of Central	Paragraph following	91	31 Jan 2024	Replace: The modal interval always has the highest bar in the histogram; in Tendency and Location case, the modal interval is 0.0 to 0.9 percent, and this interval Exhibit 2	

Quantitative Methods

Portfolio Mathematics

Lesson	Location	PDF Pg	Revised	Correction	
Portfolio Expected Return and Variance of Return	Equation 2	153	31 Jan 2024	Replace: $\sigma^{2}\left(\mathrm{R}_{\mathrm{p}}\right)=E\left\{\left[\mathrm{R}_{\mathrm{p}} E\left(\mathrm{R}_{\mathrm{p}}\right)\right]^{2}\right\}$	With: $\sigma^{2}\left(R_{p}\right)=E\left\{\left[R_{p}-E\left(R_{p}\right)\right]^{2}\right\} .$
Portfolio Expected Return and Variance of Return	Equation 4	154	31 Jan 2024	Replace: $\operatorname{Cov}\left(R_{i}, R_{j}\right)=\sum_{n=1}^{n}\left(R_{i, t} \bar{R}_{i}\right)\left(R_{j, t}-E R_{j}\right) /(n-1) .$	With: $\operatorname{Cov}\left(R_{i}, R_{j}\right)=\sum_{n-1}^{n}\left(R_{i, t}-\bar{R}_{i}\right)\left(R_{j, t}-E \bar{R}_{j}\right) /(n-1) .$
Portfolio Expected Return and Variance of Return	Calculation under Equation 5	154	31 Jan 2024	Replace: $\begin{aligned} & =w_{1}^{2} \sigma^{2}\left(R_{1}\right)+w_{1} w_{2} \operatorname{Cov}\left(R_{1}, R_{2}\right)+w_{1} w_{3} \operatorname{Cov}\left(R_{1}, R_{3}\right) \\ & +w_{1} w_{2} \operatorname{Cov}\left(R_{1}, R_{2}\right)+w_{2}^{2} \sigma^{2}\left(R_{2}\right)+w_{2} w_{3} \operatorname{Cov}\left(R_{2}, R_{3}\right) \\ & +w_{1} w_{3} \operatorname{Cov}\left(R_{1}, R_{3}\right)+w_{2} w_{3} \operatorname{Cov}\left(R_{2}, R_{3}\right)+w_{2}^{3} \sigma^{2}\left(R_{3}\right) . \end{aligned}$	With: $\begin{aligned} & =w_{1}^{2} \sigma^{2}\left(R_{1}\right)+w_{1} w_{2} \operatorname{Cov}\left(R_{1}, R_{2}\right)+w_{1} w_{3} \operatorname{Cov}\left(R_{1}, R_{3}\right) \\ & +w_{1} w_{2} \operatorname{Cov}\left(R_{1}, R_{2}\right)+w_{2}^{2} \sigma^{2}\left(R_{2}\right)+w_{2} w_{3} \operatorname{Cov}\left(R_{2}, R_{3}\right) \\ & +w_{1} w_{3} \operatorname{Cov}\left(R_{1}, R_{3}\right)+w_{2} w_{3} \operatorname{Cov}\left(R_{2}, R_{3}\right)+w_{2}^{3} \sigma^{2}\left(R_{3}\right) \end{aligned}$
Portfolio Expected Return and Variance of Return	Example 1, Solution 3 last line	157	31 Jan 2024	Replace: $\sigma(R p)=99.72^{1 / 2}$	With: $\sigma(R p)=99.72^{1 / 2}=9.99 \%$

Quantitative Methods

Hypothesis Testing

Parametric and Non-Parametric Tests of Independence

Lesson	Location	PDF Pg	Revised	Correction	
Tests Concerning Correlation	Question Set, Practice Problem 2	251	31 Jan 2024	Replace: $\begin{aligned} & \text { r s = }=1-6(91(4840 .) 5) \\ & =-0.20416 . \end{aligned}$	With: $\begin{aligned} & r s=1-6(91(4840 .) 5) \\ & =-0.20417 \end{aligned}$
Tests Concerning Correlation	Question Set, Practice Problem 3	251	31 Jan 2024	Replace: $t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \text { is } t=\frac{-0.2416 \sqrt{7}}{\sqrt{1-0.041681}}=\frac{-0.540156}{0.978937}=-0.55177$	With: $t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \text { is } t=\frac{-\mathbf{0 . 2 0 4 1 7} \sqrt{7}}{\sqrt{1-0.041681}}=\frac{-\mathbf{0 . 5 4 0 1 8 3}}{0.978937}=\mathbf{-} \mathbf{0 . 5 5 1 8 1} .$

Quantitative Methods

Simple Linear Regression

Lesson	Location	PDF Pg	Revised	Correction	
Hypothesis Tests in the Simple Linear Regression Model	Equation 20	286	31 Jan 2024	Replace: $t_{\text {intercept }}=\frac{\hat{b}_{0}-B_{0}}{s_{b_{0}}}=\frac{\hat{b}_{0}-B_{0}}{\sqrt{\frac{1}{n}+\frac{X^{2}}{\sum_{t=1}^{n}\left(X_{i}-\bar{X}\right)^{1}}}}$	With: $t_{\text {intercept }}=\frac{\hat{b}_{0}-B_{0}}{{ }^{s} \hat{b}_{0}}=\frac{\hat{b}_{0}-B_{0}}{\mathbf{s} \sqrt{\frac{1}{n}+\frac{X^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}}}$
Hypothesis Tests in the Simple Linear Regression Model	Exhibit 24	286	31 Jan 2024	Replace equation in Step 5:	With: $t_{\text {tivecupt }}=\frac{4.875-3.0}{3.4596 \times \sqrt{\frac{1}{6}+\frac{6.1^{2}}{122.64}}}=\frac{1.875}{3.4596 \times 0.68562}=0.7905 .$
Hypothesis Tests in the Simple Linear Regression Model	Exhibit 24	286	31 Jan 2024	Replace text in Step 6: Reject the null hypothesis. There is sufficient evidence to indicate that the intercept is greater than 3%.	With: Do not reject the null hypothesis. There is not sufficient evidence to indicate that the intercept is greater than 3%.
Hypothesis Tests in the Simple Linear Regression Model	Test of Hypotheses: Level of Significance and p Values	289	31 Jan 2024	Replace second sentence in third paragraph under the section: The p -value corresponding to this test statistic is 0.016 , which means there is just a 0.16 percent chance of rejecting the null hypotheses when it is true.	With: The p-value corresponding to this test statistic is 0.016 , which means that, assuming the null hypothesis is true, there is a 1.6% chance of observing a test statistic as extreme as the one observed, or more extreme.

Economics

Monetary Policy

Lesson	Location	PDF Pg	Revised	Correction	
Interaction of	Practice	485	31 Jan 2024	Replace answer options:	With:
Monetary and	Problem 7			accurately determine the neutral rate of interest.	A. accurately determine the neutral rate of interest. Fiscal Policy
			A. regulate the willingness of financial institutions to lend.	B. regulate the willingness of financial institutions to lend. C. control amounts that economic agents deposit into banks.	

Portfolio Management

Portfolio Risk and Return: Part I

Lesson	Location	PDF Pg	Revised	Correction	
Portfolio	Example	28	8 March	Replace formula under "The expected return of this portfolio is":	With:
Risk \&	5		2024	$R p=w 1 \times R 1+(1-\mathrm{w} 1) \times R 2$	$R p=\mathrm{w} 1 \times \mathrm{R} 1+(1-\mathrm{w} 1) \times \mathrm{R2} 2$
Portfolio of				$=0.6 \times 0.055+0.4 \times 0.07$	$=0.6 \times 0.055+0.4 \times 0.007$
Two Risky					$0.0358 \approx 3.6 \%$
Assets					$=0.0358 \approx 3.6 \%$.

Portfolio Risk and Return: Part II

Lesson	Location	PDF Pg	Revised	Correction	
Capital	Example	89	31 Jan 2024	Replace the second calculation under Solution:	
Asset Pricing	8			$E\left(R_{i}\right)=R_{f}+\beta_{i}\left[E\left(R_{m}\right)-R_{f}\right]$	$E^{\prime}\left(R_{p}\right)=R_{f}+\beta_{p}\left[E\left(R_{m}\right)-R_{f}\right]$
Model:				$=0.04+1.30 \times(0.16-0.04)$	$=0.04+1.30 \times(0.16-0.04)$
Assumptions				$=0.196$	$=0.196$
and the				$=19.6 \%$	$=19.6 \%$
Security					
Market Line					

Portfolio Management

Working Capital and Liquidity					
Lesson	Location	PDF Pg	Revised	Correction	
Cash Conversion Cycle	Question Set	229	31 Jan 2024	Replace: B is correct. The issuer that uses the vendor financing by delaying payments is increasing its days payable outstanding and thus lengthening its cash conversion cycle.	With: A is correct. The issuer that uses the vendor financing by delaying payments is increasing its days payable outstanding and thus shortening its cash conversion cycle.

Analyzing Balance Sheets							
Lesson	Location	PDF Pg	Revised	Correction			
Ratios and Common- Size	Ratio Analysis practice questions	447	31 Jan 2024	Replace Solution to question 2 : A, B, and C are correct. The cash ratio, quick ratio, and current ratio are lower in 2017 than in 2016.	With: B and C are correct. The ratios are shown in the table below. The quick ratio and current ratio are lower in 2017 than in 2016. The cash ratio is slightly higher in 2017 than in 2016.		
				Replace the Cash row in the solution table:	With: (Cash + Marketable securities) \div Current liabilities	$\begin{aligned} & (€ 4,011+0) \div € 10,210= \\ & 0.39 \end{aligned}$	$(€ 3,702+0) \div € 9,674=0.38$

Corporate Issuers
 Capital Structure

Lesson	Location	PDF Pg	Revised	Correction	
Optimal Capital Structure	Paragraph following Exhibit 7	323	4 March	Replace: However, as debt increases, the possible financial distress costs rise substantially and equal the tax benefit of debt at D*. Beyond this point, greater leverage reduces firm value, the present value of financial distress costs outweigh the tax benefit.	With: However, as debt increases, the present value of expected financial distress costs begins to rise and offset the tax benefit of debt, with the optimal amount of debt D* at the point at which the marginal benefit of the tax shield equals the marginal cost of expected financial distress. Beyond this point, greater leverage reduces firm value, as the increased present value of expected financial distress costs outweighs the marginal tax benefit.

Working Capital and Liquidity

Lesson	Location	PDF Pg	Revised	Correction	
Cash	Question	229	4 March	Replace: Conversion Cycle	Set,
Solution 3		2024	B is correct. The issuer that uses the vendor financing by delaying payments is increasing its days payable outstanding and thus lengthening its cash conversion cycle. The issuer is reducing its need for liquidity by taking advantage of the vendor financing at the cost of the forgone discount.	A is correct. The issuer that uses the vendor financing by delaying payments is increasing its days payable outstanding and thus shortening its cash conversion cycle. The issuer is reducing its need for liquidity by taking advantage of the vendor financing at the cost of the forgone discount.	

Financial Statement Analysis

Analysis of Income Tax

Lesson	Location	PDF Pg	Revised	Correction	
Deferred Tax Assets and Liabilities	First paragraph under Realizability of Deferred Tax Assets	10	31 Jan 2024	Replace: A deferred tax asset may be created only if the company expects to be able to realize the economic benefit of the deferred tax asset in the future. ...the temporary difference will not lead to recognition of a deferred tax asset. If a deferred tax asset was recognized previously, but there was sufficient doubt about the economic benefits being realized, then, under IFRS, an existing deferred tax asset would be reversed. Under US GAAP, a valuation allowance would be established to reduce the amount of the deferred tax asset to the amount that is more likely than not to be realized.	With: A deferred tax liability may be created only if the company expects to be able to realize the economic benefit of the deferred tax liability in the future. ...the temporary difference will not lead to recognition of a deferred tax liability. If a deferred tax liability was recognized previously, but there was sufficient doubt about the economic benefits being realized, then, under IFRS, an existing deferred tax liability would be reversed. Under US GAAP, a valuation allowance would be established to reduce the amount of the deferred tax liability to the amount that is more likely than not to be realized.

Analyzing Statements of Cash Flows I

Lesson	Location	PDF Pg	Revised	Correction	
Linkages between the Financial Statements	Exhibit 4	490	$\begin{aligned} & 8 \text { March } \\ & 2024 \end{aligned}$	Replace table header: Income Statement for year ended 31 December 20X1 \qquad Replace table header: Statement of Cash Flows for year ended 31 December 20X1	With: Income Statement for year ended 31 December 20X2 \qquad With: Statement of Cash Flows for year ended 31 December 20X2

Financial Statement Analysis
 Analyzing Statements of Cash Flows II

Lesson	Location	PDF Pg	Revised	Correction	
Ratios and Common-Size Analysis	Paragraph under Exhibit 5	525	$8 \text { March }$ 2024	Replace: The common-size statement in Exhibit 5 has been developed based on Acme's cash flow statement using the indirect method for operating cash flows and using net revenue (cash received from customers) for the company in 2018 of USD23,598 from Exhibit 3.	With: The common-size statement in Exhibit 5 has been developed based on Acme's cash flow statement using the indirect method for operating cash flows and using net revenue (cash received from customers) for the company in 2018 of USD23,598 from Exhibit 3.

Analysis of Inventories

Lesson	Location	PDF Pg	Revised	Correction	
Practice Problems	Question 34	570	$8 \text { March }$ 2024	Replace solution: B is correct.	With: C is correct.
				Explanatory text should read:	In a period of rising inventory costs, inventory valued using FIFO would have relatively higher values compared to inventory valued using LIFO. Thus, any mark downs of inventory values to NRV would have the least impact on inventories valued using the LIFO method as they are already conservatively valued.

Financial Statement Analysis

Einancial Statement Modeling

Lesson	Location	PDF Pg	Revised	Correction		
Intro- duction to Financial Statement Modeling	8					

Equity Investments

Company Analysis: Past and Present

Lesson	Location	PDF Pg	Revised	Correction	
Practice Problems	Paragraph intro text	474	31 Jan 2024	Replace the sentence before Practice Problem 1: On average, NewShips' commission, which it receives as a broker from the customer, was 6\% of the freight rate.	With: On average, NewShips' commission, which it receives as a broker from the customer, was 5\% of the freight rate.
Practice Problems	Question 4	475 and 476	31 Jan 2024	Question should be disregarded as there is not sufficient information about Net Profit to provide a complete answer.	

Equity Investments

Equity Valuation: Concepts and Basic Tools

| Lesson | Location | PDF Pg | Revised | Correction | |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- |
| Method of
 Comparables
 and | Example 14 | 596 | 31 Jan 2024 | Replace: | |
| Valuation
 Based on
 Trice | | | | Thus, total revenues for Boeing are expected to be about a fifth
 higher than those for Boeing. | With:
 Thus, total revenues for Boeing are expected to be about a fifth
 higher than those for Airbus. |

Fixed Income

Yield and Yield Spread Measures for Fixed-Rate Bonds

Lesson	Location	PDF Pg	Revised	Correction	
Other Yield Measures, Conventions, and Accounting for Embedded Options	Question Set	171	31 Jan 2024	Replace the solution to question 4: $r=0.0762 \times 2=0.1512 .$ The yield-to-first call for the bond is 15.12%.	With: $r=0.0762 \times 2=\mathbf{0 . 1 5 2 5} .$ The yield-to-first call for the bond is $\mathbf{1 5 . 2 5 \%}$.
Yield Spread Measures for Fixed-Rate Bonds and Matrix Pricing	Example 9, Solution 1	177	$\begin{aligned} & 8 \text { March } \\ & 2024 \end{aligned}$	Replace the G-spread of: $\begin{aligned} & \mathrm{R}=0.0018662 \times 2=0.00373 \\ & 0.01271-0.00373=89 \mathrm{bps} \end{aligned}$	With: $R=0.002618 \times 2=0.005235$ Therefore, the G-spread is $0.01271-0.005235=75 \mathrm{bps}$.

Fixed Income

Yield and Yield Spread Measures for

Floating-Rate Instruments

Lesson	Location	PDF Pg	Revised	Correction	
Yield Measures for Money Market Instruments	Example 3	197-198	31 Jan 2024	Replace the first equation and preceding text: The price of the commercial paper is 98.560 per 100 of face value, calculated using Equation 2 and entering $F V=100$, Days $=90$, Year $=$ 360 , and $D R=0.0012$. $\begin{aligned} & P V=F V \times\left(1-\frac{\text { Days }}{\text { Year }} \times D R\right) . \\ & P V=100 \times\left(1-\frac{90}{360} \times 0.0012\right) \\ & P V=99.970 \end{aligned}$ Next, use Equation 5 to solve for $A O R$ for a 365-day year, where Year $=$ 365, Days $=90, F V=100$, and $P V=99.970$. $\begin{aligned} & A O R=\frac{\text { Year }}{\text { Days }} \times \frac{F V-P V}{P V} \\ & A O R=\frac{365}{90} \times \frac{100-99.970}{99.970} . \\ & A O R=0.00122 . \end{aligned}$ The 90-day commercial paper discount rate of 0.120% converts to an add-on rate for a 365 -day year of 0.122%.	With: The price of the commercial paper is 99.975 per 100 of face value, calculated using Equation 2 and entering FV = 100, Days = 90 , $\mathrm{Year}=360$, and $D R=0.0010$. $\begin{aligned} & P V=F V \times\left(1-\frac{\text { Days }}{\text { Year }} \times D R\right) \\ & P V=100 \times\left(1-\frac{90}{360} \times \mathbf{0 . 0 0 1 0}\right) \\ & P V=99.975 \end{aligned}$ Next, use Equation 5 to solve for AOR for a 365-day year, where Year $=365$, Days $=90, F V=100$, and $P V=99.975$. $\begin{aligned} & A O R=\frac{\mathrm{Year}}{\text { Days }} \times \frac{F V-P V}{P V} \\ & A O R=\frac{365}{90} \times \frac{100-99.975}{99.975} \\ & A O R=0.00122 \end{aligned}$ The 90-day commercial paper discount rate of $\mathbf{0 . 1 0 \%}$ converts to an add-on rate for a 365 -day year of $\mathbf{0 . 1 0 1 4 \%}$.

Lesson	Location	PDF Pg	Revised	Correction	
Yield Measures for Money Market Instruments	Practice Problems, solution 1	205	31 Jan 2024		Delete the first sentence: The estimated discount margin is $195 \mathrm{bps}$.

Fixed Income

The Term Structure of Interest Rates: Spot, Par, and
Forward Curves

Lesson	Location	PDF Pg	Revised	Correction	
Maturity Structure of Interest Rates and Spot Rates	Example 1, question 2	215	31 Jan 2024	Replace solution of: $P V=100.01$	With: $P V=99.99$
Par and Forward Rates	Example 2, Solution to question 1	218	$\begin{aligned} & 8 \text { March } \\ & 2024 \end{aligned}$	Replace: $\begin{aligned} & 100=\frac{P M T}{\left(1+z_{1}\right)^{1}}+\frac{P M T}{\left(1+z_{2}\right)^{2}}+\frac{P M T+100}{\left(1+z_{N}\right)^{N}} . \\ & 100=\frac{P M T}{(1+0.003117)^{1}}+\frac{P M T}{(1+0.568)^{2}}+\frac{P M T+100}{(1+0.7977)^{3}} . \end{aligned}$ We can factor out PMT and then solve for it: $\begin{aligned} & 100=P M T \times\left(\frac{1}{(1+0.003117)^{1}}+\frac{1}{(1+0.568)^{2}}+\frac{1}{(1+0.7977)^{3}}\right)+\frac{100}{(1+0.7977)^{3}} . \\ & P M T=0.7952 . \end{aligned}$	With: $\begin{aligned} & 100=\underline{\left(1+z_{1}\right)^{1}}+\frac{P M T}{\left(1+z_{2}\right)^{2}}+\cdots+\frac{P M T+100}{\left(1+z_{N}\right)^{N}} . \\ & 100=\frac{P M T}{(1+0.003117)^{1}}+\frac{P M T}{(1+\mathbf{0 . 0 0 5 6 8})^{2}}+\frac{P M T+100}{(1+\mathbf{0 . 0 0 7 9 7 7})^{3}} . \end{aligned}$ We can factor out PMT and then solve for it: $\begin{aligned} & 100=P M T \times\left(\frac{1}{(1+0.003117)^{1}}+\frac{1}{(1+0.00568)^{2}}+\frac{1}{(1+0.007977)^{3}}\right)+\frac{100}{(1+0.007977)^{3}} . \\ & P M T=0.7952 . \end{aligned}$
Par and Forward Rates	Example 3, Solution	220	31 Jan 2024	Replace: Therefore, $A=1, B=3, Z A$ is the two-year spot rate, and $Z B$ is the three-year spot rate:	With: Therefore, $\mathbf{A}=\mathbf{2}, \mathrm{B}=3, \mathrm{ZA}$ is the two-year spot rate, and ZB is the threeyear spot rate:

Lesson	Location	PDF Pg	Revised	Correction	
Par and Forward Rates	Example 3. Solution	220	31 Jan 2024	Replace second from last equation: $(1+0.00568)^{2} \times(1+I F R 2,1)^{1}=(1+0.007977)^{3}$	With: $\mathbf{(1 + 0 . 0 1 8 8)} \times\left(\mathbf{1 + 0 . 0 2 7 7) = (1 + Z 2)}{ }^{2}\right.$

Fixed Income

Interest Rate Risk and Return

| Lesson | Location | PDF Pg | Revised | Correction | |
| :--- | :--- | :---: | :---: | :--- | :--- | :--- |
| Macaulay
 Duration | Equation
 3 | 254 | 8 March
 2024 | There is a missing bracket in the denominator of the second term,
 after subtracting 1. Replace:
 MacDur $=\left\{\frac{1+r}{r}-\frac{1+r+[N \times(c-r)]}{c \times\left[(1+r)^{N}-1+r\right.}\right\}-\frac{t}{T}$ | With: |
| Practice
 Problems | Solutions,
 solution 2 | 258 | 31 Jan 2024 | Replace:
 A is correct. The future value of reinvested coupon interest is
 $=F V(0.054,6,6.4,0,0)=46.245$. | MacDur $=\left\{\frac{1+r}{r}-\frac{1+r+[N \times(c-r)]}{c \times\left[(1+r)^{N}-1\right]+r}\right\}-\frac{t}{T}$ |

Fixed Income

Yield-Based Bond Duration Measures and Properties

Lesson	Location	PDF Pg	Revised	Correction	
Introduction	Learning Module Self Assessment, Solution to 3	265	$\begin{gathered} 8 \text { March } \\ 2024 \end{gathered}$	Replace two instances in calculation that says " 308 " with " 380 ": C is correct. The money duration is 380 : MoneyDur $=308$. Δ PVFull $\approx-308 \times 0.005$.	With: C is correct. The money duration is 380 : MoneyDur $=\mathbf{3 8 0}$. $\Delta P V F u l l) ~-380 \times 0.005$.
Modified Duration	Example 1	269	31 Jan 2024	Replace row in first table: \qquad Replace row in third table: $\begin{array}{ll}\text { Settlement date } & 15 \text { Oct. } 2025 \\ \text { Maturity } & 15 \text { Oct. } 2035\end{array}$	With: Maturity 15 Oct. 2030 With: Settlement date $\mathbf{1 1}$ Dec. 2025 Maturity 15 Oct. 2030$\$$.
Properties of Duration	Following first paragraph	284	$\begin{aligned} & 8 \text { March } \\ & 2024 \end{aligned}$	There is a missing bracket in the denominator of the second term, after subtracting 1. Replace: $\text { MacDur }=\left\{\frac{1+r}{r}-\frac{1+r+[N \times(c-r)]}{c \times\left[(1+r)^{N}-1+r\right.}\right\}-\frac{t}{T}$	With: $\text { MacDur }=\left\{\frac{1+r}{r}-\frac{1+r+[N \times(c-r)]}{c \times\left[(1+r)^{N}-1\right]+r}\right\}-\frac{t}{T}$

| Lesson | Location | PDF Pg | Revised | Correction | |
| :---: | :--- | :---: | :---: | :--- | :--- | :--- |
| Properties
 of Duration | Question
 Set,
 solution to
 1 | 287 | 31 Jan 2024 | Replace last cell in "Second bond" column: | With: |
| | | | 4% coupon, paid semiannually, and five years to maturity, priced
 to yield 4\% | 4\% coupon, paid semiannually, and five years to maturity, priced
 to yield 8% | |

Fixed Income

Fixed Income

Curve-Based and Empirical Fixed-Income Risk Measures

Lesson	Location	PDF Pg	Revised	Correction	
Key Rate Duration as a Measure of Yield Curve Risk	Exhibit 5	331	$\begin{gathered} 8 \text { March } \\ 2024 \end{gathered}$	Replace: Assume the portfolio is weighted by the prices of the respective 2-, 5 -, and 10-year bonds for a total portfolio value of \$293 million, or \$1 million $\times(99.50+98.31+95.43)$. The portfolio's modified duration is calculated as $\begin{aligned} & 5.345=[1.991 \times(99.5 / 293.2)]+[4.869 \times(98.3 / 293.2)]+[9.333 \times \\ & (95.4 / 293.2)] . \end{aligned}$ Alternatively, we could calculate each key rate duration by maturity. For example, the two-year key rate duration (KeyRateDur2) is $0.676=1.991 \times(99.5 / 293.2)$ Note that the three key rate duration values sum to the portfolio duration value of 5.345.	With: Assume the portfolio is weighted by the prices of the respective 2-, 5 -, and 10-year bonds for a total portfolio value of $\mathbf{\$ 2 7 7}$ million, or $\$ 1$ million $\times(99.006+93.96+81.01)$. The portfolio's modified duration is calculated as $\begin{aligned} & 5.368=[1.990 \times(99.006 / 277)]+[4.938 \times 93.96 / 277)]+[9.828 \times \\ & (84.01 / 277)] \end{aligned}$ Alternatively, we could calculate each key rate duration by maturity. For example, the two-year key rate duration (KeyRateDur2) is $0.711=1.990 \times(99.006 / 277) .$ Note that the three key rate duration values sum to the portfolio duration value of $\mathbf{5 . 3 6 8}$.

Lesson	Location	PDF Pg	Revised	Correction	
Curve- Based Interest Rate Risk Measures	Example 1	324	$\begin{aligned} & 8 \text { March } \\ & 2024 \end{aligned}$	Replace: $\text { EffDur }=\frac{(P V-)-(P V+)}{2 \times(\Delta C \text { urve }) \times\left(P V_{0}\right)}$ $\begin{gathered} \text { EffDur }=\frac{(102.891)-(99.050)}{2 \times(0.00025) \times(101.060)} . \end{gathered}$ $\text { EffDur = } 7.601$ $\begin{aligned} & \text { EffCon }=\frac{\left[(P V-)+\left(P V_{+}\right)-2 \times\left(P V_{0}\right)\right] .}{\left(\Delta C_{\text {urve }}\right)^{2} \times\left(P V_{0}\right)} \\ & \text { EffCon }=\frac{[(102.891)+(99.050)-[2 \times(101.060)]}{(0.00025)^{2} \times(101.060)} . \end{aligned}$	With: $\begin{aligned} & \text { EffDur }=\frac{(P V-)-(P V+)}{2 \times(\Delta C u r v e) \times\left(P V_{0}\right)} . \\ & \text { EffDur }=\frac{(102.891)-(99.050)}{2 \times(\mathbf{0 . 0 0 2 5) \times (1 0 1 . 0 6 0)} .} \\ & \text { EffDur }=7.601 . \\ & \text { EffCon }=\frac{\left.\left[(P V-)+\left(P V_{+}\right)-2 \times\left(P V_{0}\right)\right]\right] .}{(\Delta C u r v e)^{2} \times\left(P V_{0}\right)} . \\ & \text { EffCon }=\frac{[(102.891)+(99.050)-[2 \times(101.060)]}{(0.0025)^{2} \times(101.060)} . \end{aligned}$
Curve- Based Interest Rate Risk Measures	Example 1, Solution to question 2	325	$\begin{aligned} & 8 \text { March } \\ & 2024 \end{aligned}$	Replace: $\begin{aligned} & \text { EffDur }=\frac{(P V-)-(P V+)}{2 \times(\Delta C u r v e) \times(P V 0)} . \\ & \text { EffDur }=\frac{(103.891)-(100.004) .}{2 \times(0.00025) \times(102.208)} . \\ & \text { EffDur }=76.061 . \end{aligned}$	With: $\begin{aligned} \text { EffDur } & =\frac{(P V-)-(P V+)}{2 \times(\Delta C u r v e) \times(P V O)} . \\ \text { EffDur } & =\frac{(103.891)-(100.004)}{2 \times(0.0025) \times(102.208)} . \\ \text { EffDur } & =\mathbf{7 . 6 0 6 1} . \end{aligned}$
Curve- Based Interest Rate Risk Measures	Example 1, Solution to question 4	326	$\begin{aligned} & 8 \text { March } \\ & 2024 \end{aligned}$	Replace: $\begin{aligned} & \text { EffDur }=\frac{(P V-)+(P V+)-\left[2 \times\left(P V_{0}\right)\right]}{(\Delta C u r v e)^{2} \times\left(P V_{0}\right)} . \\ & \text { EffDur }=\frac{[(103.891)+(98.504)]-[2 \times(102.208)]}{(0.00025)^{2} \times(102.208)} . \\ & \text { EffDur }=-3,164 . \end{aligned}$	With: $\begin{aligned} & \text { EffDur }=\frac{(P V-)+(P V+)-\left[2 \times\left(P V_{0}\right)\right] .}{(\Delta C u r v e)^{2} \times\left(P V_{0}\right)} . \\ & \text { EffDur }=\frac{[(103.891)+(98.504)]-[2 \times(102.208)]}{(0.0025)^{2} \times(102.208)} . \\ & \text { EffDur }=-3,164 . \end{aligned}$

Fixed Income

Credit Risk

Lesson	Location	PDF Pg	Revised	Correction	
Introduction	Learning Module Self Assessment, Question and Solution2	342	$\begin{gathered} 8 \text { March } \\ 2024 \end{gathered}$	Replace question: A EUR500,000 loan has the following characteristics: - Probability of default 5\% - Collateral EUR100,000 - Recovery rate 90% - Expected exposure EUR400,000	With: A EUR500,000 loan has the following characteristics: - Probability of default 5% - Collateral EUR100,000 - Recovery rate 90% - Expected exposure EUR400,000
				The expected loss for this loan in event of default is: A. EUR1,500 B. EUR2,000	The expected loss for this loan ineven of defle is: A. EUR1,500 B. EUR2,000
				Replace solution: The correct answer is A. We solve for expected loss (EL) as follows: $E L=P O D \times(E E-\text { Collateral }) \times(1-R R) .$ Since probability of default (POD) is 5%, expected exposure (EE) is EUR400,000, collateral is EUR100,000, and the recovery rate ($R R$) is 90% : $E L=E U R 1,500=0.05 \times(400,000-100,000) \times(1-0.9) .$ B is incorrect as it fails to reduce the expected exposure by the collateral, while C is incorrect as it simply multiplies EE and POD.	With: The correct answer is \mathbf{B}. We solve for expected loss (EL) as follows: $E L=P O D \times L G D=P O D \times E E \times(1-R R) .$ Since probability of default (POD) is 5%, expected exposure (EE) is EUR400,000, collateral is EUR100,000, and the recovery rate (RR) is 90% : $E L=E U R 2,000=0.05 \times(400,000-100,000) \times(1-0.9)$

Lesson	Location	PDF Pg	Revised	Correction	
Factors Impacting Yield Spreads	Question Set, question and solution 2	373	31 Jan 2024	Replace option C in question: C. 54 bps . Replace solution: $\begin{aligned} & \text { Bid yield: } 93.75=100 /(1+r) 5 \\ & r_{\text {bid }}=1.2937 \% \\ & \text { Offer yield: } 93.75=100 /(1+r) 5 \\ & r_{\text {offer }}=1.2991 \% \end{aligned}$ The liquidity spread of 54 bps (0.0054%) is equal to the difference in the bid yield and the offer yield (= 1.2991\% - 1.2937\%).	With: C. 0.54 bps With: $\begin{aligned} & \text { Bid yield: } 93.75=100 /(1+r) 5 \\ & r_{\text {bid }}=1.2991 \% \\ & \text { Offer yield: } 93.7755=100 /(1+r) 5 \\ & r_{\text {offer }}=1.2937 \% \end{aligned}$ The liquidity spread of $\mathbf{0 . 5 4} \mathbf{b p s}(0.0054 \%)$ is equal to the difference in the bid yield and the offer yield (= $=1.2991 \%$ 1.2937\%).
Practice Problems	Solutions, solution to 6	375	31 Jan 2024	Replace: Δ Spread $=-0.015=-1.5 \%$. Lower spreads make the first expression in the equation positive, along with the equation's second convexity-based term. The answer must therefore involve a decline in spreads as in answers A and B. However, B is incorrect since it fails to rescale convexity.	With: Δ Spread $=-0.0135=-1.35 \%$ Lower spreads make the first expression in the equation positive, along with the equation's second convexity-based term. The answer must therefore involve a decline in spreads as in answers A. and B. However, B is incorrect since it fails to rescale convexity.

Fixed Income

Mortgage-Backed Security (MBS) Instrument and
 Market Features

Lesson	Location	PDF Pg	Revised	Correction
Practice Problems	Practice Problem $7-8$	524	31 Jan 2024	Practice Problems 7 and 8 should be together one question. The solution to this Practice Problem appears as the solution to 7, and the subsequent solutions are all off one number: (Solution to 8 in print is actually the solution to Practice Problem 9, solution to 9 is actually the solution to Practice Problem 10, etc.)

Derivatives

Arbitrage, Replication, and the Cost of Carry in Pricing

Derivatives

Lesson	Location	PDF Pg	Revised	Correction		
Costs and Benefits	Example Associated with Owning the	90	31 Jan 2024	Replace the formula:	With:	
Underlying						

Lesson	Location	PDF Pg	Revised	Correction	
Costs and Benefits	Question Set,	93	8 March	Replace: Associated with Owning the	Question U2
		2024	B is correct. The FX forward rate is greater than the spot rate if the Underlying		
domestic risk-free rate is greater than the foreign risk-free rate.	With: B is correct. The FX forward rate is greater than the spot rate if the foreign risk-free rate is greater than the domestic risk-free rate.				

Derivatives

Pricing and Valuation of Futures Contracts

Lesson	Location	PDF Pg	Revised	Correction	
Pricing and Valuation of Interest Rate Forward Contracts	Solution 5	110-111	$\begin{aligned} & 8 \text { March } \\ & 2024 \end{aligned}$	Replace all references to "gain" in the answer with "loss"	An immediate appreciation in the ZAR/EUR spot price after contract inception will result in an MTM loss from Rook Point's perspective as the forward seller of ZAR/EUR. The FX forward MTM from Rook Point's perspective equals the present value of the forward price discounted at the interest rate differential between the foreign currency and the domestic currency minus the spot price: $\mathrm{VO}(\mathrm{~T})=\mathrm{FO}, \mathrm{f} / \mathrm{d}(\mathrm{~T}) \mathrm{e}-(\mathrm{rf}-\mathrm{rd}) \mathrm{T}-\mathrm{so}, \mathrm{f} / \mathrm{d}$ Note that ZAR is the price, or foreign, currency and EUR is the base, or domestic, currency, so we can rewrite the equation as: VO(T) = FO,ZAR/EUR (T) e-(r ZAR-r EUR)T - SO,ZAR/EUR If the ZAR price (SO,ZAR/EUR) appreciates from 16.909 to 16.5, we can show that Rook Point would have a 0.4090 loss, as follows: $\begin{aligned} & \text { Vt }(\mathrm{T})=17.2506 \mathrm{e}-(0.035--0.005) \times(0.5)-16.5 \\ & =16.909-16.5 \\ & =0.4090 \end{aligned}$

Lesson	Location	PDF Pg	Revised	Correction		
Pricing Futures of Contracts at Inception	Example 2	131	31 Jan 2024	In the last two calculations, remove the negative sign from the exponent to replace: $\operatorname{PV}_{0}(C)=\$ 1.99=\left[\$ 2(1.02)^{-0.24982}\right]$ and $f_{0}(T)=(\$ 1,770.00+\$ 1.99)(1.02)^{-0.24982}$	With: and	$\mathrm{PV} \mathrm{~V}_{0}(\mathrm{C})=\$ 1.99=\left[\$ 2(1.02)^{0.24982}\right] .$ $\begin{aligned} & f_{0}(T)=(\$ 1,770.00+\$ 1.99)(1.02)^{0.24982} \\ & =\$ 1,780.78 \text { per ounce. } \end{aligned}$

Derivatives

Option Replication Using Put-Call Parity

Derivatives

Valuing a Derivative Using a One-Period Binomial Model

Lesson	Location	PDF Pg	Revised	Correction	
Pricing a European Call Option	8				

Alternative Investments

Alternative Investment Features, Methods, Structures

Alternative Investments
 Alternative Investment Performance and Returns

Lesson	Location	PDF Pg	Revised	Correction	
Alternative Investment Returns	Example 4, Question 2	283	31 Jan 2024	Replace: In the second year, Kettleside fund value declines to $\$ 110$ million. The fee structure is as specified in Question 1 but also includes the use of a high-water mark (PHWM) computed net of fees.	With: In the second year, Kettleside fund value declines to $\$ 110$ million. The fee structure is as specified in Question 1 of Example $\mathbf{3}$ but also includes the use of a high-water mark (PHWM) computed net of fees.

Lesson	Location	PDF Pg	Revised	Correction		
Alternative Investment Returns	Example 4, Question 3	284	$\begin{gathered} 8 \text { March } \\ 2024 \end{gathered}$	Replace the Solution: We amend Equations 8 and 9 to reflect returns for the third period and calculate as follows:	With: We amend Equations 8 and 9 to reflect returns for the third period and calculate as follows:	
				$\begin{aligned} & R_{G P}(\text { High-Water Mark })=\left(P_{3} \times r_{m}\right)+\max \left[0,\left(P_{3}-P_{H W M}\right) \times p\right] . \\ & \mathrm{ri}=(\mathrm{P} 3-\mathrm{P} 2-\mathrm{RGP}) / \mathrm{P} 2 . \end{aligned}$	$R_{G P(\text { Net with }}$ ri $=(\mathrm{P} 3-\mathrm{P}$	$\text { er Mark } \left.)=\left(\mathbf{P}_{3} \times r_{m}\right)+\max \left[0, \mathbf{P}_{3}\left(1-r_{m}\right)-\boldsymbol{P}_{\text {HwM }}\right) \times p\right]$ P)/P2.
				Note that the high-water mark, PHWM, is the highest value of the fund after fees in all previous years. In Kettleside's case, it was $\$ 122.7$ million, the ending value in the first year, P1.	Note that fund after $\$ 122.7$ mi	h-water mark, PHWM, is the highest value of the all previous years. In Kettleside's case, it was he ending value in the first year, P1.
				Kettleside Timberland LP Performance Fee Modifications	Kettlesi	berland LP Performance Fee Modifications
				Year Fund Value (sm$)$), after Fees	Year	Fund Value (sm), after Fees
					0	100.00 122.70 High-Water Mark
				$2 \mathrm{l\mid l}$	2	108.90
				RGP(High-Water Mark)	RGP(High	Mark)
				$=\$ 128$ million $\times 1 \%+\max [0,(\$ 128$ million $-\$ 122.7$ million $) \times 20 \%]$	= \$128 mimil	1\% + max[0, (\$128 x $0.99-\$ 124.16) \times 20 \%]$
				= \$2.34 million.	= \$1.792	
				$\mathrm{r}_{\mathrm{i}}=(\$ 128$ million $-\$ 108.9$ million $-\$ 2.34$ million $) / \$ 108.9$ million	$\mathrm{r}_{\mathrm{i}}=\mathbf{(\$ 1 2 8}$	- \$108.9 million - \$1.792 million)/\$108.9 million
				$=15.39 \%$.	= 15.89\%.	
				The beginning capital position in the third year for the investors is $\$ 110$ million - $\$ 1.1$ million $=\$ 108.9$ million. The ending capital position for the third year is $\$ 128$ million $-\$ 2.34$ million $=\$ 125.66$ million, which represents a new high-water mark to be applied the following year for this investor.	The begin \$110 millio position fo \$126.208 applied th	pital position in the third year for the investors is .1 million = $\$ 108.9$ million. The ending capital third year is $\$ 128$ million $\mathbf{-} \$ 1.792$ million $=$, which represents a new high-water mark to be wing year for this investor.

Alternative Investments

Investments in Private Capital: Equity and Debt

Lesson	Location	PDF Pg	Revised	Correction	
Diversification Benefits of Private Capital	7	Solution	324	8 March	The Solution to Practice Problem 7 on page 324 should be changed
to:					

Real Estate and Infrastructure

Lesson	Location	PDF Pg	Revised	Correction	
Infrastructure Investment Characteristics	Practice Problems	351	31 Jan 2024	Replace: Akasaka Investment Company established a portfolio of warehouse properties with a total market value of THB3.60 billion. It secured mortgage financing of THB2.61 billion. The terms of the mortgage required Akasaka to maintain a loan-to-value ratio of 0.725 . After 18 months, the portfolio value had dropped to THB2.23 billion and the mortgage liability was THB2.35 billion.	With: Akasaka Investment Company established a portfolio of warehouse properties with a total market value of THB3.60 billion. It secured mortgage financing of THB2.61 billion. The terms of the mortgage required Akasaka to maintain a loan-to-value ratio of 0.725 . After 18 months, the portfolio value had dropped to THB3.23 billion and the mortgage liability was THB2.35 billion.

Ethical and Professional Standards

Guidance for Standards I-VII

Lesson	Location	PDF Pg	Revised	Correction	
Standard IV(A): Recommended Procedures	Text under Incident- Reporting Procedures	323	31 Jan 2024	Part of the print page is not appearing. The full paragraph is as follows:	Members and candidates should be aware of their firm's policies related to whistleblowing and encourage their firm to adopt industry best practices in this area. Many firms are required by regulatory mandates to establish confidential and anonymous reporting procedures that allow employees to report potentially unethical and illegal activities in the firm.

Ethics Application

Lesson	Location	PDF Pg	Revised	Correction	
Responsibilities as a CFA	Conduct as Institute	Participants	460	31 Jan 2024	Replace under Analysis:
Member or	in CFA			B is correct.	With:
Institute				C is correct.	
CFA Candidate	Programs				

