Curriculum Errata Notice

2024 Level III CFA Program

UPDATED 22 August 2024

This document outlines the errors submitted to CFA Institute that have been corrected.

Due to the nature of our publishing process, we may not be able to correct errors submitted after 1 September 2024 in time for the publication of the following year's print materials. However, we update all errors in the Learning Ecosystem (LES) and in this document at the end of each month.

We recommend checking either the LES or this document regularly for the most current information. Depending on when you purchase the print materials, they may or may not have the errors corrected.

All errors can be submitted via http://cfa.is/Errata

Table of Contents

Contents Portfolio Management, Vol. 1	3
Capital Market Expectations, Part 1: Framework and Macro Considerations	
Capital Market Expectations, Part 2: Forecasting Asset Class Returns	
Portfolio Management, Vol. 2	4
Swaps, Forwards, and Future Strategies	
Currency Management: An Introduction	5
Overview of Fixed-Income Portfolio Management	6
Portfolio Management, Vol. 3	8
Yield Curve Strategies	
Fixed-Income Active Management: Credit Strategies	
Active Equity Investing: Portfolio Construction	
Portfolio Management, Vol. 4	14
Hedge Fund Strategies	
Overview of Private Wealth Management	
Topics in Private Wealth Management	
Risk Management for Individuals	
Portfolio Management, Vol. 5	
Trade Strategy and Execution	
Portfolio Performance Evaluation	
Investment Manager Selection	
Case Study in Risk Management: Private Wealth	
Case Study in Risk Management: Institutional	

Portfolio Management, Vol. 1

Capital Market Expectations, Part 1: Framework

and Macro Considerations

Lesson	Location	PDF Pg	Revised	Correction	
Challenges in Forecasting	The Argentine Peso Devaluations	13	10 May 2024	Replace: The currency was allowed to fluctuate freely, and the peso further depreciated to 3.8 ARS/USD by June 2001.	With: The currency was allowed to fluctuate freely, and the peso further depreciated to 3.8 ARS/USD by June 2002 .
Analysis of Monetary and Fiscal Policies	Example 12 Guideline Answer 3	40	29 July 2024	Replace: Short-term market interest rates will be dragged downward by weak demand and inflation.	With: Short-term market interest rates will be dragged downward by weak demand and deflation .

Capital Market Expectations, Part 2: Forecasting

Asset Class Returns

Lesson	Location	PDF Pg	Revised	Correction	
Forecasting Fixed Income Returns	Example 1 Solution	71	10 May 2024	Replace: Reinvesting for three more years at the 2.0% higher rate adds another 6.0% to the cumulative return, so the five-year annual return would be approximately 0.46% [= $3.25 + (1 + 1.0 + 6.0)/5$]. With an additional two years of reinvestment income, the seven- year annual return would be about 1.99% [= $1 + (-9.68 + 1.0 + 6.0 + 4.0)/7$].	With: Reinvesting for three more years at the 2.0% higher rate adds another 6.0% to the cumulative return, so the five-year annual return would be approximately 0.46% [= $1.0 + (-9.68 + 1.0 + 6.0)/5$]. With an additional two years of reinvestment income, the seven- year annual return would be about 1.19% [= $1 + (-9.68 + 1.0 + 6.0 + 4.0)/7$].

Lesson	Location	PDF Pg	Revised	Correction	
Forecasting Equity Returns	Last sentence on page	87	15 Feb 2024	Replace: Adding in the risk-free rate, the expected returns for German shares and bonds would be 4.93% and 42.16%, respectively.	With: Adding in the risk-free rate, the expected returns for German shares and bonds would be 4.93% and 2.16% , respectively.
Solutions	Solution 1	127	15 Feb 2024	Replace: Estimate of the expected return of an equal-weighted investment in the three securities: (1% + 2% + 3.3%)/3 = 42.1%	With: Estimate of the expected return of an equal-weighted investment in the three securities: $(1\% + 2\% + 3.3\%)/3 = 2.1\%$.

Portfolio Management, Vol. 2

Swaps, Forwards, and Future Strategies

Lesson	Location	PDF Pg	Revised	Correction	
Practice Problems	Information relating to questions 2-8	125	10 May 2024	Replace:Statement 1If the basis is positive, a trade would make a profitby "selling the basis."Statement 2If the basis is negative, a trader would make aprofit by selling the bond and buying the futures.	 With: Statement 4 If the basis is positive, a trade would make a profit by "selling the basis." Statement 5 If the basis is negative, a trader would make a profit by selling the bond and buying the futures.

Lesson	Location	PDF Pg	Revised	Correction	
Practice Problems	Question 24	131	10 May 2024	Replace: Explain how Ko can use this information to understand potential movements in the current federal funds rate.	With: Explain how Ko can use this information to understand potential movements in the federal funds rate. Calculate the probability of an increase in 25 bps in the target range.

Currency Management: An Introduction

Lesson	Location	PDF Pg	Revised	Correction				
Foreign Exchange Concepts	Paragraph following question 4	147	10 May 2024	Replace: In the example above, this would be done by redenominating the mark-to-market in USD, by selling 240,000 AUD 90-days forward against the USD at the prevailing USD/AUD 90-day forward bid rate.	With: In the example above, this would be done by redenominating the mark-to-market in USD, by selling 206,000 AUD 90-days forward against the USD at the prevailing USD/AUD 90-day forward bid rate.			
Forward Contracts, FX Swaps, and Currency Options	Table within Executing a Hedge	180	29 July 2024	Replace: JPY/HKD 14.4/14.4 –1.2/–1.1	With: JPY/HKD 14.4/14.42 –1.2/–1.1			
Forward Contracts, FX Swaps, and Currency Options	Example 4 Solution to 1	183	10 May 2024	Replace: Kwun Tong is long the GBP against the HKD, and HKD/GBP is selling at a small forward discount of -0.106% compared with the current spot rate However, the firm's market strategist expects the GBP to depreciate by 3.92% against the HKD.	With: Kwun Tong is long the GBP against the HKD, and HKD/GBP is selling at a small forward discount of 0.099% compared with the current spot rate However, the firm's market strategist expects the GBP to depreciate by 3.77% against the HKD.			
Forward Contracts, FX Swaps, and Currency Options	Example 4 Solution to 2	184	10 May 2024	Replace: But the firm's strategist also forecasts that the ZAR will depreciate against the HKD by 2.2%.	With: But the firm's strategist also forecasts that the ZAR will depreciate against the HKD by 2.11%.			
Currency Management Tools and	Table within Example 8	203	10 May 2024	Replace:	With:			

Lesson	Location	PDF Pg	Revised	Correction								
Strategies: A				s(%∆ _{SGBP/USD})	σ(R _{DC})	$ρ(R_{DC}; \% \Delta S_{GBP/USD})$	σ(%ΔS_GBP/USD)	σ(<i>R_{DC}</i>)	ρ(R _{DC} ;%ΔS _{GBP/USD})			
Summary				2.7%	4.4%	0.2	2.7%	4.4%	0.2			
Currency Management Tools and Strategies: A Summary	Example 2 Solution	207	29 July 2024	Replace: With: Note that Portfolio 4 has the highest Sharpe ratio and is the tangency portfolio. With: tangency portfolio. Note that Portfolio 4 has the highest Sharpe ratio and is the tangency portfolio.								
Practice Problems	Practice Problem 14	217	10 May 2024	Replace: Overall returns can be between the US dollar range of plus or minus forward contracts on t	enhanced by cap and the Indian ru 25% from the ne he currency pair.	turing opportunities ipee (INR) within a utral position using	With: Overall returns can be enhanced by capturing opportunities between the US dollar and the Indian rupee (INR) within a range of plus or minus 25% from the neutral position consisting of 100% of the portfolio as valued in USD .					
Practice Problems	Practice Problem 33	223	19 April 2024	Replace: Calculate the net cash hedge.	flow (in euros) to	maintain the desired	With: Calculate the net cash flow (in euros) as of today to maintain the desired hedge.					
Solutions	Solution to 33	236	10 May 2024	Replace calculation un USD2,500,000 / 1.1575 Replace calculation un USD2,650,000 / 1.1583	Jation under 1: With: J / 1.1575 = EUR2,816,901. (USD 2,500,000)/ (USD 1.1575/ EUR) = EUR 2,159,82 Ilation under 2: With: 0 / 1.1583 = EUR2,977,193. (USD 2,650,000)/ (USD 1.1583/EUR) = EUR 2,287,82							
				Replace text under 3: Therefore, the net casl EUR2,816,901 which is	h flow is equal to s equal to EUR160	EUR2,977,193 - ,292.	With: Therefore, the net cash 2,159,827 which is equ	h flow is equal to Ial to EUR128,00	o EUR2,287,835 - EUR)8.			

Overview of Fixed-Income Portfolio Management

Lesson	Location	PDF Pg	Revised	Correction	
Fixed-Income Portfolio Measures	Second bullet	250	26 April 2024	Replace: Coupon-paying bonds have more convexity than zero-coupon bonds of the same duration: A 30-year coupon-paying bond with a duration of approximately 18 years has more convexity than an 18-year zero-coupon bond.	With: Coupon-paying bonds have more convexity than zero-coupon bonds of the same duration : A 30-year coupon-paying bond with a duration of approximately 18 years has more convexity than an 18-year zero-coupon bond.
Bond Market Liquidity	Third bullet point	258	1 May 2024	Move the third bullet point: As a funding cost arbitrage transaction, the TRS can allow investors to gain particular access to subsets of the fixed-income markets, such as bank loans or high-yield instruments for which cash markets are relatively illiquid or the cost and administrative complexity of maintaining a portfolio of these instruments is prohibitive for the investor.	To the paragraph preceding bulleted list: The potential for both a smaller initial cash outlay and lower swap bid-offer costs compared with the transaction costs of direct purchase or use of a mutual fund or ETF are the most compelling reasons to consider a TRS to add fixed-income exposure. As a funding cost arbitrage transaction, the TRS can allow investors to gain particular access to subsets of the fixed-income markets, such as bank loans or high-yield instruments for which cash markets are relatively illiquid or the cost and administrative complexity of maintaining a portfolio of these instruments is prohibitive for the investor.
A Model for Fixed-Income Returns	Equation 6	260	15 Feb 2024	Replace: E(Change in price based on investor's views of yields and yield volatility) = (–ModDur × ΔYield) + [½ × Convexity × (ΔSpread) ²]	With: E(ΔPrice based on investor's view of yields and yield volatility) = (– ModDur × ΔYield) + [½ × Convexity × (ΔYield) ²]
A Model for Fixed-Income Returns	Equation 7	261	15 Feb 2024	Replace: E(ΔPrice based on investor's views of yield spreads) = (–ModSpreadDur × ΔSpread) + [½ × Convexity × (ΔYield) ²].	With: (ΔPrice based on investor's view of yield spreads) = (– ModSpreadDur × ΔSpread) + [½ × Convexity × (ΔSpread)²]
A Model for Fixed-Income Returns	Example 4 Solution	262	10 May 2024	Replace: In one year's time, assuming an unchanged yield curve and zero interest rate volatility, the rolldown return is 0.17% = (£97.27 – £97.12)/£97.12. The rolling yield, which is the sum of the coupon income and the rolldown return, is 3.00% = 2.83% + 0.17%	With: In one year's time, assuming an unchanged yield curve and zero interest rate volatility, the rolldown return is 0.15% = (£97.27 – £97.12)/£97.12. The rolling yield, which is the sum of the coupon income and the rolldown return, is 3.00% = 2.98% + 0.15%

Lesson	Location	PDF Pg	Revised	Correction	
A Model for Fixed-Income Returns	Exhibit 11	262	10 May 2024	Replace row:Expected average bond prince in one year (assuming an unchanged yield curve)£97.27Replace solution: In one year's time, assuming an unchanged yield curve and zero interest rate volatility, the rolldown return is 0.17% = (£97.27 – £97.12)/£97.12.	With:Expected average bond prince in one year (assuming an unchanged yield curve)With: In one year's time, assuming an unchanged yield curve and zero interest rate volatility, the rolldown return is 0.17% = (£97.285 – £97.12)/£97.12.
A Model for Fixed-Income Returns	Exhibit 12	263	10 May 2024	Replace second calculation under column header Calculation: (£97.27 – £97.12)/£97.12 = 0.17%	With: (£97.285 – £97.12)/£97.12 = 0.17%

Portfolio Management, Vol. 3

Yield Curve Strategies

Lesson	Location	PDF Pg	Revised	Correction	
Yield Curve Strategies	Example 3	16	15 Feb 2024	Replace: Rolldown return: The difference between the 10-year and 9.5- year PV with no change in yield-to-maturity of ₤262,363, or [PV	With: Rolldown return: The difference between the 10-year and 9.5- year PV with no change in yield-to-maturity of £262,363, or [PV (0.029535/2, 20, 1.125, 100)] – [PV (0.029535 /2, 19, 1.125, 100)] × ₤1 million].

Lesson	Location	PDF Pg	Revised	Correction	n										
				(0.029535/: × ₤1 million	.029535/2, 20, 1.125, 100)] – [PV (0.024535/2, 19, 1.125, 100)] ₤1 million].										
Yield Curve Strategies	Example 4	17	15 Feb 2024	Replace: An investm strategies c (with a decl increase in following is	eplace:With:n investment manager who pursues the cash-based yield curveWith:n investment manager who pursues the cash-based yield curveAn investment manager who pursues the cash-based yield curvetrategies described in Exhibit 5 faces an inverted yield curvestrategies described in Exhibit 5 faces an inverted yield curvewith a decline in long-term yields-to-maturity and a sharp(with a decline in long-term yields-to-maturity and a sharpincrease in short-term yields-to-maturity) instead. Which of theincrease in short-term yields-to-maturity) instead of a static yieldcurve post implementation. Which of the following is the leastcurve post implementation. Which of the following is the least										
Yield Curve	Table	27	15 Feb 2024	Replace column header:					With:						
Strategies	below Exhibit 19			Tenor	Coupon	Position (\$ MM)	Modified Duration	Position BPV	Convexity	Tenor	Yield to Matu	Position ity (\$ MM)	Modified Duration	Position BPV	Convexity
				Long 2y Short 5y Long 10y	0.25% 0.875% 2.00%	110 -248.3 110	1.994 4.88 9.023	\$21,934 (\$121,170) \$99,253	5.0 26.5 90.8	Long 2y Short 5y Long 10y	0.25% 0.875% 7 2.00%	110 -248.3 110	1.994 4.88 9.023	\$21,934 (\$121,170) \$99,253	5.0 26.5 90.8
Yield Curve Strategies	Equation 10	34	10 May 2024	Replace: KeyRateDu	r _k = <u>1</u> P	<u>. x Δ</u> Ρ V Δ	PV r _k			With: KeyRat	teDur _k =	<u>1</u> × <u>A</u> PV	<u>.PV</u> Δr _k		

Fixed-Income Active Management: Credit

Strategies

Lesson	Location	PDF Pg	Revised	Correction	
Key Credit and Spread Concepts for Active Management	Example 4	71	29 July 2024	Replace in Solution to 3: The bank bond YTM has risen by 0.16% to 2.73% (=1.55% + 1.29%). Replace in Solution to 4: This change can be calculated as -1.11% (=-7.1 × 0.16%). New bank bond price: 99.39 (=-PV (0.0284, 8, 2.75, 100, 0) Price change: -1.11% (= (99.39 - 100.50)/100.50)	With: The bank bond YTM has risen by 0.07% to 2.75% (=1.55% + 1.20%). With: This change can be calculated as - 0.497% (=-7.1 × 0.07%). New bank bond price: 100 (=-PV (0.0275 , 8, 2.75, 100, 0) Price change: - 0.497% (= (100 – 100.50)/100.50)
Key Credit and Spread Concepts for Active Management	Second to last sentence	79	15 August 2024	Replace: For fixed-rate bonds priced at a spread over the benchmark, roll- down return from coupon income is higher by the bond's original credit spread.	With: For fixed-rate bonds priced at a spread over the benchmark, the roll-down return from coupon income is higher by the bond's original credit spread.
Key Credit and Spread Concepts for Active Management	Example 10	80	15 August 2024	Replace: "A London-based investor wants to estimate the rolling yield roll- down return attributable to a fixed-rate" "Calculate the annualized rolling yield of roll-down return to the UK corporate" "Solve for the annualized difference in roll-down return rolling yield by calculating" "The annualized roll-down return rolling yield difference is the 2.75% corporate bond"	With: "A London-based investor wants to estimate the rolling yield roll- down return attributable to a fixed-rate" "Calculate the annualized rolling yield of roll-down return to the UK corporate" "Solve for the annualized difference in roll-down return rolling yield by calculating" "The annualized roll-down return rolling yield difference is the 2.75% corporate bond"

Lesson	Location	PDF Pg	Revised	Correction	
Key Credit and Spread Concepts for Active Management	Equation 10	82	15 Feb 2024	Replace: E [ExcessSpread] ≈ Spread0 – (EffSpreadDur × ΔSpread) – (POD × LGD)	With: E [ExcessSpreadReturn] ≈ Spread0 – (EffSpreadDur × ΔSpread) – (POD × LGD)
Credit Strategies	Example 16 – Solution to 2	89	19 August 2024	Replace: B rated excess return is -0.86% = 3.5% - (7 × 0.35%) - (3.19% × 60%). The A rated bond is more attractive under this scenario.	With: B rated excess return is $0.89\% = 3.5\% - (7 \times 0.1\% - (3.19\% \times 60\%)$. The B rated bond is more attractive under this scenario.
Credit Strategies	Exhibit 21	94	14 August 2024	Replace: legend labels for the solid line "10-year Treasury" and for the dotted line with "BB yield spread"	With: the legend labels for the solid line "BB yield spread" and for the dotted line with "10-year Treasury"
Credit Strategies	Example 17	90	15 August 2024	Replace: 10-year weight: w10 = 0.50% (= (20 – 10)/(15 – 10)) 20-year weight: w20 = 0.50% (= (1 – w10))	With: 10-year weight: w10 = 0.5 (= (20 – 10)/(15 – 10)) 20-year weight: w20 = 0.5 (= (1 – w10))
Liquidity and Tail Risk	Example 20	101	10 May 2024	Replace: Consider the earlier case of an investor holding \$50 million face value of a 15-year bond with a coupon of 2.75%, a current YTM of 3.528%, and a price of 91 per 100 of face value. What is the VaR for the full bond price at a 99% confidence interval for one month (assuming 21 trading days in the month) if daily yield volatility is 1.75 bps and we assume a normal distribution?	With: Consider the earlier case of an investor holding \$50 million face value of a 15-year bond with a semiannual coupon of 2.75%, a current YTM of 3.528%, and a price of 91 per 100 of face value. What is the VaR for the full bond price at a 99% confidence interval for one month if annualized daily yield volatility is 1.75% (1.75 bps) and we assume that interest rates are normally distributed?
				First, we solve for the expected change in YTM based on a 99% confidence interval for the bond and a 1.75% yield volatility over 21 trading days, which equals 65.9 bps = (6.174 bps x 2.33 standard deviations v21). We can quantify the bond's market value change using either a duration approximation or the actual price change as follows. We can use the Excel MDURATION function to solve for the bond's duration as 12.025. We can therefore approximate the change in bond value using the	First, we must adjust the annualized yield volatility to reflect one-month period instead. The time interval under consideration is $1/12^{\text{th}}$ of a year, and therefore the volatility measure is 0.00505 (1.75% x $\sqrt{1}/12$), which for a 99% confidence interval equals 117.7 bps = (0.00505 x 2.33 standard deviations). We may quantify the bond's market value change using either a duration approximation or the actual price change as follows. We can use the Excel MDURATION function to solve for the bond's

Lesson	Location	PDF Pg	Revised	Correction		
				familiar (-Mod-Dur x Δ Yield) expression as \$3,605,636 = (\$50 million x 0.91 x (-12.025 x .00659)). We can also use the Excel PRICE function to directly calculate the new price of 88.982 and multiply the price change of 2.018 by the face value to get \$1,009,000.	duration as 12.025. We can therefore approximate the change in bond value using the familiar (-Mod-Dur x Δ Yield) expression as \$6,439,808 = (\$50 million x 0.91 x (-12.025 x .0177)). We can also use the Excel PRICE function to directly calculate the new price of 88.75 and multiply the price change of -2.25 by the face value to get \$1,125,000 .	
Credit Spread Curve Strategies	Example 28 Solution to 2	116	15 Feb 2024	Replace: The following table summarizes expected excess returns E [ExcessSpread] \approx Spread0 –(EffSpreadDur $\times \Delta$ Spread) – (POD \times LGD) for each of the four rating categories with the expected 50% increase in both OAS and expected loss under the slowdown scenario.	With: The following table summarizes expected excess returns E [ExcessSpreadReturn] \approx SpreadO –(EffSpreadDur × Δ Spread) – (POD × LGD) for each of the four rating categories with the expected 50% increase in both OAS and expected loss under the slowdown scenario.	
Credit Spread Curve Strategies	Example 29 Solution to 2	118	10 May 2024	Replace: CDX IG: 99.066 per \$100 face value, or 0.9966 (= 1 + (-0.2% × 34.67))	With: CDX IG: 99.066 per \$100 face value, or 0.99066 (= 1 + (−0.2% × 34.67))	
Practice Problems	Practice Problem 12	135	15 August 2024	Replace: C. 2.70%	With: C. 5.45%	
Practice Problems	Practice Problem 17	136	15 Feb 2024	Replace: Which bond rating category offers the highest expected excess return if spreads instantaneously rise 10% across all ratings categories?	With: Which bond rating category offers the highest expected excess return if spreads instantaneously rise 10% across all ratings categories?	
Practice Problems	Practice Problem 32	140	15 Feb 2024	Replace: What is the approximate unhedged excess return to the United States-based credit manager for an international credit portfolio index equally weighted across the four portfolio choices, assuming no change to spread duration and no changes to the expected loss occur?	With: What is the expected unhedged excess return to the United States-based credit manager for an international credit portfolio index equally weighted across the four portfolio choices, assuming no change to spread duration and no changes to the expected loss occur?	

Lesson	Location	PDF Pg	Revised	Correction	
Solutions	Solution to 12	143	15 August 2024	Replace: C is correct. The expected excess spread is equal to the change in spread multiplied by effective spread duration (–(EffSpreadDur × Δ Spread)) less the product of LGD and POD, which we can solve for to get 2.70% (=(-6 × 0.50%) – (0.75% × 40%)).	With: C is correct. Using Equation 10 (Spread0 – (EffSpreadDur x ΔSpread) – (POD x LGD)), the expected excess return on the bond is approximately 5.45% (=2.75% - (6 x -0.50%) – (0.75% x 40%)).

Active Equity Investing: Portfolio Construction

Lesson	Location	PDF Pg	Revised	Correction	
Allocating the Risk Budget	First paragraph	345	15 Feb 2024	Replace: The risk attribution in Exhibit 15 not only considers the Market factor but also adds a sector factor and a style factor.	With: The risk attribution in Exhibit 16 not only considers the Market factor but also adds a sector factor and a style factor.
Allocating the Risk Budget	Example 5 Question 1	345	15 Feb 2024	Replace: Using the information in Exhibit 15, discuss key differences in the risk profiles of Manager A and Manager C.	With: Using the information in Exhibit 16 , discuss key differences in the risk profiles of Manager A and Manager C.
Allocating the Risk Budget	Example 5 Solution to 2	346	10 May 2024	Replace: From Equation 8b (repeated below), the contribution of an asset to total portfolio variance is equal to the product of the weight of the asset and its covariance with the entire portfolio.	Replace: From Equation 9 (repeated below), the contribution of an asset to total portfolio variance is equal to the product of the weight of the asset and its covariance with the entire portfolio.
Additional Risk Measures	Second paragraph	349	15 Feb 2024	Replace: Exhibit 18 presents five different risk measures for the same three products discussed in Exhibit 15.	With: Exhibit 18 presents five different risk measures for the same three products discussed in Exhibit 16 .

Portfolio Management, Vol. 4

Hedge Fund Strategies

Lesson	Location	PDF Pg	Revised	Correction	
Specialist Strategies	Second sentence	47	10 May 2024	Replace: At expiry of the swaps, the receiver of the floating leg pays the difference between the realized volatility (or variance) and the agreed-on strike times some prespecified notional amount that is not initially exchanged.	With: At expiry of the swaps, the player of the floating leg pays the difference between the realized volatility (or variance) and the agreed-on strike times some prespecified notional amount that is not initially exchanged.

Overview of Private Wealth Management

Lesson	Location	PDF Pg	Revised	Correction	
Solutions	Solution 11	266	10 May 2024	Replace: The mass affluent segment covers asset levels between \$250,000 and \$1 million and serves clients who are focused on building their portfolios and want help with financial planning needs.	With: The mass affluent segment covers asset levels between \$100,000 and \$1 million and serves clients who are focused on building their portfolios and want help with financial planning needs.

Topics in Private Wealth Management

Lesson	Location	PDF Pg	Revised	Correction	
Measuring Tax Efficiency with After-Tax Returns	Equation bottom of page	288	15 Feb 2024	Replace: $R_{PL} = \left[\left(1 + R_1' \right) \left(1 + R_2' \right) \dots \left(1 + R_n' \right) - \frac{\text{liquidation tax}}{\text{final value}} \right]^{1/n} - 1,$	With: $R_{PL} = \left[\left(1 + R_1' \right) \left(1 + R_2' \right) \dots \left(1 + R_n' \right) - \frac{\text{liquidation tax}}{\text{final value}} \right]^{1/n} - 1,$
Measuring Tax Efficiency with After-Tax Returns	Example 4	289	15 Feb 2024	Replace: Therefore, the portfolio value net of the tax liability is 1.177: 1.197 – 0.02 = 1.177,	With: Therefore, the portfolio value net of the tax liability is 1.173 : 1.197 - 0.02 = 1.173 ,
Measuring Tax Efficiency with After-Tax Returns	Example 4	289	15 Feb 2024	Replace: Therefore, the portfolio value net of the tax liability is $\frac{1.177:1.197 - 0.02 = 1.177}{,}$ and the annualized post-liquidation return is $\frac{3.32\%}{1.177(1/5) - 1 = 3.32\%}$. This compares to an annualized return for the non-taxable investor of 4.13%	With: Therefore, the portfolio value net of the tax liability is 1.173 : 1.197(1 – 0.02) = 1.173 , and the annualized post-liquidation return is 3.24%: 1.173(1/5) - 1 = 3.24% . This compares to an annualized return for the non-taxable investor of 4.13%.
Measuring Tax Efficiency with After-Tax Returns	Example 5 Solution to 3	293	15 Feb 2024	Replace: Her after-tax return is 9.21%: [(25,000 + 500) – (500 × 0.535) – (25,000 × 0.535)]/130,000	With: Her after-tax return is 9.12% [(25,000 + 500) – (500 × 0.535) – (25,000 × 0.535)]/130,000
Measuring Tax Efficiency with After-Tax Returns	Example 5 Solution 5	294	15 Feb 2024	Replace: Her after-tax return is −2.99% [(−10,000 + 500 − 500 × 0.535 + 10,000 × 0.535) / 130,000].	With: Her after-tax return is –3.40% [(–10,000 + 500 – 500 × 0.535 + 10,000 × 0.535) / 130,000]
Introduction to Estate Planning	Example 18 Question 1 & Solution	333	10 May 2024	Replace: 1. Considering the first year's tax-free gift associated with the annual exclusion, how much of his estate will Philippe have	With: 1. Considering the first year's tax-free gift associated with the annual exclusion, how much of his estate will Philippe have

Lesson	Location	PDF Pg	Revised	Correction	
				transferred on an inflation-adjusted basis in 20 years without paying estate tax?	transferred on an inflation adjusted basis in 20 years without paying estate tax?
				Solution: In 20 years, the future value (measured in real terms) equals €20,000 × [1 + 0.06(1 – 0.20)]20 = €51,080.56. Note that although the gift was not subject to a wealth transfer tax, its subsequent investment returns are nonetheless taxable at 20%.	Solution: In 20 years, the future value (measured in real terms) equals €20,000 × [1 + 0.06(1 – 0.20)]20 = €51,080.56. Note that although the gift was not subject to a wealth transfer tax, its subsequent investment returns are nonetheless taxable at 20%.
Practice Problems	Question 6	352	1 May 2024	Replace: 6. The annualized after-tax post-liquidation return calculated by Chen is closest to: A. 4.41%. B. 5.62%. C. 5.92%	With: 6. The annualized after-tax post-liquidation return calculated by Chen is closest to: A. 4.41%. B. 5.56%. C. 5.92%
Solutions	Solution 6	358	1 May 2024	Replace: The portfolio value net of the unrealized gains tax liability is given by subtracting the assumed tax liability from capital gains at liquidation from the final after-tax portfolio value:	With: The portfolio value net of the unrealized gains tax liability is given by reducing the final after-tax portfolio value by the amount of the assumed tax liability from capital gains at liquidation:
				Portfolio value net of the unrealized gains tax liability = 1.1882 – 0.01 = 1.1782.	Portfolio value net of the unrealized gains tax liability = 1.1882 (1-0.01) = 1.1763.
				Second, calculate the annualized post-liquidation return as follows: 1.1782(1/3) – 1 = 5.62%	Second, calculate the annualized post-liquidation return as follows: 1.1782 ^{1/3} – 1 = 5.562%
Solutions	Solution 9	360	15 Feb 2024	Replace: Tax under HIFO = (\$124 – #153) × 0.25 × 200 = –\$550 (tax loss or benefit)	With: Tax under HIFO = (\$124 – \$135) × 0.25 × 200 = –\$550 (tax loss or benefit).
Solutions	Solution 10	360	15 Feb 2024	Replace: The portfolio's risk-to-reward ratio is less than what could be achieved in the absence of the concentrated positions.	With: The portfolio's risk-to-reward ratio (the amount of risk Omo's portfolio has compared with the portfolio's potential returns) is higher than what could be achieved in the absence of the concentrated positions.

Risk Management for Individuals

Lesson	Location	PDF Pg	Revised	Correction	
Risk Management Implementation	Exhibit 9	417	15 August 2024	Replace: Probability of Having Enough Money over One's Lifetime	With: Probability of Not Having Enough Money over One's Lifetime

Portfolio Management, Vol. 5

Trade Strategy and Execution

Lesson	Location	PDF Pg	Revised	Correction	
Solutions	Solution 12	184	10 May 2024	Replace: The portfolio managers at North Circle and Valley Ranch have different aversions to risk, with North Circle's managers having higher risk aversion than the Valley Ranch managers.	With: The portfolio managers at North Circle and Valley Ranch have different aversions to risk, with Valley Ranch's managers having higher risk aversion than the North Circle managers.

Portfolio Performance Evaluation

Lesson	Location	PDF Pg	Revised	Correction		
Fixed-Income Return Attribution	First bullet after Exhibit 7	212	10 May 2024	 Replace: The portfolio underperformed its benchmark by 20 bps 13 bps were added through bond selection. 	With: •	The portfolio underperformed its benchmark by 26 bps . 7 bps were added through bond selection.

Lesson	Location	PDF Pg	Revised	Correction	
Return Attribution Analysis at Multiple Levels	Third bullet	220	15 Feb 2024	Replace: The large-cap value benchmark underperformed the total benchmark (–0.28% versus –0.03%). Because the portfolio was underweight large-cap value, this led to a positive allocation effect of 0.03.	With: The large-cap growth benchmark underperformed the total benchmark (–1.08% versus -0.03%). Because the portfolio was underweight large-cap growth , this led to a positive allocation effect of 0.03.
Benchmarks	Last bullet	233	10 May 2024	Replace: Investor (Mismeasured) Active Return = Mgr Return – Investor Benchmark return = (Mgr Return - Normal portfolio Return) + (Normal Portfolio Return - Investor Benchmark return) = True Active Return + Misfit Active Return = 18.0 – 20.0 = -9.0 + (-11.0) = -2.0%	With: Investor (Mismeasured) Active Return = Mgr Return – Investor Benchmark return = (Mgr Return - Normal portfolio Return) + (Normal Portfolio Return - Investor Benchmark return) = True Active Return + Misfit Active Return = (18.0 – 9.0) + (9.0 – 20.0) = 9.0+ (-11.0) = -2.0%
Performance Appraisal: Capture Ratios and Drawdowns	Exhibit 20	247	15 August 2024	Replace: "Recovery begins" under July 2020	With: Move "Recovery begins" to April 2020
Performance Appraisal: Capture Ratios and Drawdowns	Exhibit 21	248	15 August 2024	Replace: "Drawdown begins" label on chart with April "Recovery begins" label on chart with September	With" Move "Drawdown begins" label on chart to January Move "Recovery begins" label on chart to April

Investment Manager Selection

Lesson	Location	PDF Pg	Revised	Correction	
A Framework for Investment Manager Search and Selection	Exhibit 1 Key Aspects – Quantitative Analysis	271	10 May 2024	Replace: Quantitative Analysis Investment due diligence Which manager "best" fits the portfolio need?	With: Quantitative Analysis Investment due diligence Which manager "best" fits the portfolio need?
Practice Problems	The following information relates to question 26	315	1 August 2024	Replace:With:Asked about Lyon's regulatory context, Moore states, "The regulatory environment is strong and seeks to decrease information symmetries."With:Asked about Lyon's regulatory context, Moore states, "The regulatory environment is strong and seeks to decrease information asymmetries."With:	
Solutions	Solution to 26 - Justification	329	1 August 2024	t Replace: With: The reliance of Lyon's strategy on unique information is a drawback as it is difficult for Lyon to have an informational edge in a regulatory environment that seeks to reduce informational symmetries. Swmetries.	

Case Study in Risk Management: Private Wealth

Lesson	Location	PDF Pg	Revised	Correction			
Identification and Analysis of Risk Exposures: Career Development Stage	Economic Balance Sheet	407	1 August 2024	Replace: Net wealth	391,000	With: Net wealth	371,000

Case Study in Risk Management: Institutional

Lesson	Location	PDF Pg	Revised	Correction			
Case Study	Memo 2A: Asset Allocation and Performanc e – Graphic	487	15 Feb 2024	Replace: Tota Alternatives 51%	Equities- Emerging/Frontier 17% Equities-Developed 12% Fixed Income 9%	With: To Alternatives 51%	tal Portfolio Equities- Emerging/Frontier 22% Equities-Developed 17% Fixed Income 9%