2024 CFA Program: Pre-Read Errata
 29 January 2024

If you find something in the curriculum that you think is in error, please submit full details via the form at http://cfa.is/Errata.

The eBook for the 2024 curriculum is formatted for continuous flow, so the text will fit all screen sizes. Therefore, eBook page numbering-which is linked to section headsdoes not match page numbering in the print curriculum.

- Corrections below are in bold, and new corrections will be shown in red; page numbers shown are for the print volumes.
- The short scale method of numeration is used in the CFA Program curriculum. A billion is 10^{9} and a trillion is 10^{12}. This is in contrast to the long scale method where a billion is 1 million squared and a trillion is 1 million cubed. The short scale method of numeration is the prevalent method internationally and in the finance industry.

Quantitative Methods
 Interest Rates, Present Value, and Future Value (Quant LM1)

- In the Solution to 24 (page 54 of print), the timeline in part "i" should appear as follows:

In part "iii" the last sentence should read, "The present value of the college costs as of t $=17$ is 74,464 ." and the calculation that follows should read,

$$
P V=\$ 20,000\left[\frac{1-\frac{1}{(1.05)^{4}}}{0.05}\right] \times \mathbf{1 . 0 5}=\mathbf{7 4 , 4 6 4}
$$

In part "iv" the calculation should read,

$$
\$ 74,464=\frac{(1.05)^{17}-1}{0.05}=25.840366 X
$$

$$
X=\$ 2, \mathbf{8 8 1 . 6 0}
$$

In the table below the calculation, $\$ 70,919$ should be $\mathbf{\$ 7 4 , 4 6 4}$.

Organizing, Visualizing, and Describing Data (LM2)

- A paragraph should be added immediately preceding Example 10 (page 111 of print): The harmonic mean only works for non-negative numbers, so when working with returns that are expressed as positive or negative percentages, we first convert the returns into a compounding format, assuming a reinvestment, as $(1+\mathrm{R})$, as was done in the geometric mean return calculation, and then calculate ($1+$ harmonic mean), and subtract 1 to arrive at the harmonic mean return.
$\left(1+R_{\text {harnonix }}\right)=n \sum\left[1 /\left(1+R_{n}\right)\right] ; R_{\text {harmani }}$
$=n \sum\left[1 /\left(1+R_{n}\right)\right]-1$

Probability Concepts (LM3)

- In Example 1 (page 159 of print), the Solution to 2 should read, "In the example, if the odds against your second colleague passing the exam are 1 to 4 , this means the probability of the event is $4 /(1+4)=4 / 5=0.80$."

Common Probability Distributions (LM4)

- The equation above Exhibit 4 (page 198 of print) should read:

$$
F(x)=\left\{\begin{array}{l}
0 \text { for } x<a \\
\frac{x-a}{b-a} \\
\mathbf{1} \text { for } \mathbf{x}>\mathbf{b}
\end{array} \text { for } a \leq x \leq b\right.
$$

- In Exhibit 7 (page 207 of print), the middle column should read: $p, n p$ (not $p, N p$).
- The first sentence of the Solution to Practice Problem 25 (page 235 in print) should read, " B is correct, since it is false."

Basics of Hypothesis Testing (LM6)

- In Exhibit 8 (page 278 of print), the Procedure for Method 2 should read, "Compare the hypothesized parameter's value with the bounds of the confidence interval."
- In Example 8, Solution to 2 (page 289 of print), in Step 2, the phrase "with 1,304-1 = 1,303 degrees of freedom." should be deleted.
- Practice Question 13 (page 309 of print) should read, "For each of the following hypothesis tests concerning the population variance, state the conclusion."
- In the solution to Practice Question 3 (page 317 of print), the first sentence should read, " \mathbf{B} is correct."

Financial Statement Analysis

Inventories (LM5)

- In the Solution to Practice Problem 20 (page 176 of print), the second sentence should read, "No LIFO liquidation occurred during 2018; the LIFO reserve increased from $¥ 10,120$ million in 2017 to $¥ 19,660$ million in 2018 ."

Non-Current (Long-Term) Liabilities (LM8)

- In Example 4, the Solution to 4 (page 248 of print) should read:

Under the straight-line method, the premium is evenly amortised over the life of the bonds. In this example, the £44,518 premium would be amortised by £8,903.60 ($£ 44,518$ divided by 5 years) each year under the straight-line method. So, the annual interest expense under the straight-line method would be $£ 41,096.40$ ($£ 50,000$ less $£ 8,903.60$).

